Skip to main content

The Gram Dimension of a Graph

  • Conference paper
Combinatorial Optimization (ISCO 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7422))

Included in the following conference series:

Abstract

The Gram dimension \(\text{\rm gd}(G)\) of a graph is the smallest integer k ≥ 1 such that, for every assignment of unit vectors to the nodes of the graph, there exists another assignment of unit vectors lying in ℝk, having the same inner products on the edges of the graph. The class of graphs satisfying \(\text{\rm gd}(G) \le k\) is minor closed for fixed k, so it can characterized by a finite list of forbidden minors. For k ≤ 3, the only forbidden minor is K k + 1. We show that a graph has Gram dimension at most 4 if and only if it does not have K 5 and K 2,2,2 as minors. We also show some close connections to the notion of d-realizability of graphs. In particular, our result implies the characterization of 3-realizable graphs of Belk and Connelly [5,6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Proskurowski, A., Corneil, D.G.: Forbidden minors characterization of partial 3-trees. Disc. Math. 8(1), 1–19 (1990)

    Article  MathSciNet  Google Scholar 

  2. Avidor, A., Zwick, U.: Rounding Two and Three Dimensional Solutions of the SDP Relaxation of MAX CUT. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 14–25. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Barahona, F.: The max-cut problem on graphs not contractible to K 5. Operations Research Letters 2(3), 107–111 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barvinok, A.: A remark on the rank of positive semidefinite matrices subject to affine constraints. Disc. Comp. Geom. 25(1), 23–31 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Belk, M.: Realizability of graphs in three dimensions. Disc. Comput. Geom. 37, 139–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belk, M., Connelly, R.: Realizability of graphs. Disc. Comput. Geom. 37, 125–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computational Mathematics 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer (1997)

    Google Scholar 

  9. Duffin, R.J.: Topology of series-parallel networks. Journal of Mathematical Analysis and Applications 10(2), 303–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. E.-Nagy, M., Laurent, M., Varvitsiotis, A.: Complexity of the positive semidefinite matrix completion problem with a rank constraint (preprint, 2012)

    Google Scholar 

  11. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian matrices. Linear Algebra and its Applications 58, 109–124 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Göring, F., Helmberg, C., Wappler, M.: The rotational dimension of a graph. J. Graph Theory 66(4), 283–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hogben, L.: Orthogonal representations, minimum rank, and graph complements. Linear Algebra and its Applications 428, 2560–2568 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laurent, M.: Matrix completion problems. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, vol. III, pp. 221–229. Kluwer (2001)

    Google Scholar 

  15. Laurent, M., Varvitsiotis, A.: A new graph parameter related to bounded rank positive semidefinite matrix completions (preprint, 2012)

    Google Scholar 

  16. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Th. IT-25, 1–7 (1979)

    Article  Google Scholar 

  17. Lovász, L.: Semidefinite programs and combinatorial optimization. Lecture Notes (1995), http://www.cs.elte.hu/~lovasz/semidef.ps

  18. Lovász, L.: Geometric representations of graphs. Lecture Notes (2001), http://www.cs.elte.hu/~lovasz/geomrep.pdf

  19. Peeters, R.: Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica 16(3), 417–431 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagners conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proc. 17th Allerton Conf. Comm. Control Comp., pp. 480–489 (1979)

    Google Scholar 

  23. Man-Cho So, A.: A semidefinite programming approach to the graph realization problem. PhD thesis, Stanford (2007)

    Google Scholar 

  24. Man-Cho So, A., Ye, Y.: A semidefinite programming approach to tensegrity theory and realizability of graphs. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 766–775 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laurent, M., Varvitsiotis, A. (2012). The Gram Dimension of a Graph. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds) Combinatorial Optimization. ISCO 2012. Lecture Notes in Computer Science, vol 7422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32147-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32147-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32146-7

  • Online ISBN: 978-3-642-32147-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics