Abstract
The Gram dimension \(\text{\rm gd}(G)\) of a graph is the smallest integer k ≥ 1 such that, for every assignment of unit vectors to the nodes of the graph, there exists another assignment of unit vectors lying in ℝk, having the same inner products on the edges of the graph. The class of graphs satisfying \(\text{\rm gd}(G) \le k\) is minor closed for fixed k, so it can characterized by a finite list of forbidden minors. For k ≤ 3, the only forbidden minor is K k + 1. We show that a graph has Gram dimension at most 4 if and only if it does not have K 5 and K 2,2,2 as minors. We also show some close connections to the notion of d-realizability of graphs. In particular, our result implies the characterization of 3-realizable graphs of Belk and Connelly [5,6].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Proskurowski, A., Corneil, D.G.: Forbidden minors characterization of partial 3-trees. Disc. Math. 8(1), 1–19 (1990)
Avidor, A., Zwick, U.: Rounding Two and Three Dimensional Solutions of the SDP Relaxation of MAX CUT. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 14–25. Springer, Heidelberg (2005)
Barahona, F.: The max-cut problem on graphs not contractible to K 5. Operations Research Letters 2(3), 107–111 (1983)
Barvinok, A.: A remark on the rank of positive semidefinite matrices subject to affine constraints. Disc. Comp. Geom. 25(1), 23–31 (2001)
Belk, M.: Realizability of graphs in three dimensions. Disc. Comput. Geom. 37, 139–162 (2007)
Belk, M., Connelly, R.: Realizability of graphs. Disc. Comput. Geom. 37, 125–137 (2007)
Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computational Mathematics 9(6), 717–772 (2009)
Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer (1997)
Duffin, R.J.: Topology of series-parallel networks. Journal of Mathematical Analysis and Applications 10(2), 303–313 (1965)
E.-Nagy, M., Laurent, M., Varvitsiotis, A.: Complexity of the positive semidefinite matrix completion problem with a rank constraint (preprint, 2012)
Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian matrices. Linear Algebra and its Applications 58, 109–124 (1984)
Göring, F., Helmberg, C., Wappler, M.: The rotational dimension of a graph. J. Graph Theory 66(4), 283–302 (2011)
Hogben, L.: Orthogonal representations, minimum rank, and graph complements. Linear Algebra and its Applications 428, 2560–2568 (2008)
Laurent, M.: Matrix completion problems. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, vol. III, pp. 221–229. Kluwer (2001)
Laurent, M., Varvitsiotis, A.: A new graph parameter related to bounded rank positive semidefinite matrix completions (preprint, 2012)
Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Th. IT-25, 1–7 (1979)
Lovász, L.: Semidefinite programs and combinatorial optimization. Lecture Notes (1995), http://www.cs.elte.hu/~lovasz/semidef.ps
Lovász, L.: Geometric representations of graphs. Lecture Notes (2001), http://www.cs.elte.hu/~lovasz/geomrep.pdf
Peeters, R.: Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica 16(3), 417–431 (1996)
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010)
Robertson, N., Seymour, P.D.: Graph minors. XX. Wagners conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)
Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proc. 17th Allerton Conf. Comm. Control Comp., pp. 480–489 (1979)
Man-Cho So, A.: A semidefinite programming approach to the graph realization problem. PhD thesis, Stanford (2007)
Man-Cho So, A., Ye, Y.: A semidefinite programming approach to tensegrity theory and realizability of graphs. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 766–775 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laurent, M., Varvitsiotis, A. (2012). The Gram Dimension of a Graph. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds) Combinatorial Optimization. ISCO 2012. Lecture Notes in Computer Science, vol 7422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32147-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-32147-4_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32146-7
Online ISBN: 978-3-642-32147-4
eBook Packages: Computer ScienceComputer Science (R0)