Abstract
Symmetry plays an important role in optimization. The usual approach to cope with symmetry in discrete optimization is to try to eliminate it by introducing artificial symmetry-breaking conditions into the problem, and/or by using an ad-hoc search strategy. In this paper we argue that symmetry is instead a beneficial feature that we should preserve and exploit as much as possible, breaking it only as a last resort. To this end, we outline a new approach, that we call orbital shrinking, where additional integer variables expressing variable sums within each symmetry orbit are introduces and used to “encapsulate” model symmetry. This leads to a discrete relaxation of the original problem, whose solution yields a bound on its optimal value. Encouraging preliminary computational experiments on the tightness and solution speed of this relaxation are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007)
Gatermann, K., Parrilo, P.: Symmetry groups, semidefinite programs and sums of squares. Journal of Pure and Applied Algebra 192, 95–128 (2004)
Liberti, L.: Reformulations in mathematical programming: Automatic symmetry detection and exploitation. Mathematical Programming A 131, 273–304 (2012)
Liberti, L., Cafieri, S., Savourey, D.: The Reformulation-Optimization Software Engine. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 303–314. Springer, Heidelberg (2010)
Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Programming 94, 71–90 (2002)
Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming B 98, 3–21 (2003)
McKay, B.: Nauty User’s Guide (Version 2.4). Computer Science Dept., Australian National University (2007)
Ostrowski, J.P., Linderoth, J., Rossi, F., Smriglio, S.: Constraint Orbital Branching. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 225–239. Springer, Heidelberg (2008)
Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathematical Programming 126, 147–178 (2011)
Seress, A.: Permutation Group Algorithms. Cambridge University Press, Cambridge (2003)
Sherali, H., Smith, C.: Improving discrete model representations via symmetry considerations. Management Science 47(10), 1396–1407 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fischetti, M., Liberti, L. (2012). Orbital Shrinking. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds) Combinatorial Optimization. ISCO 2012. Lecture Notes in Computer Science, vol 7422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32147-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-32147-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32146-7
Online ISBN: 978-3-642-32147-4
eBook Packages: Computer ScienceComputer Science (R0)