Abstract
In this paper, we study the well-known algorithm of Bentley and Saxe in the context of similarity search in metric spaces. We apply the algorithm to existing static metric index structures, obtaining dynamic ones. We show that the overhead of the Bentley-Saxe method is quite low, and because it facilitates the dynamic use of any state-of-the-art static index method, we can achieve results comparable to, or even surpassing, existing dynamic methods. Another important contribution of our approach is that it is very simpleāan important practical consideration. Rather than dealing with the complexities of dynamic tree structures, for example, the core index can be built statically, with full knowledge of its data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic transformation. Journal of Algorithms 1(4), 301ā358 (1980)
Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of 21th International Conference on Very Large Data Bases, VLDB, pp. 574ā584 (1995)
Brisaboa, N.R., Pedreira, O., Seco, D., Solar, R., Uribe, R.: Clustering-Based Similarity Search in Metric Spaces with Sparse Spatial Centers. In: Geffert, V., KarhumƤki, J., Bertoni, A., Preneel, B., NĆ”vrat, P., BielikovĆ”, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 186ā197. Springer, Heidelberg (2008)
ChĆ”vez, E., Navarro, G.: A Probabilistic Spell for the Curse of Dimensionality. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 147ā160. Springer, Heidelberg (2001)
Figueroa, K., Navarro, G., Chavez, E.: Metric spaces library (2010), http://www.sisap.org/Metric_Space_Library.html (downloaded November 15, 2011)
Fu, A.W.-C., Chan, P.M.-S., Cheung, Y.-L., Moon, Y.S.: Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise distances. The VLDB Journal 9(2), 154ā173 (2000)
Hetland, M.L.: The Basic Principles of Metric Indexing. In: Coello, C.A.C., Dehuri, S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Mining. SCI, vol. 242, pp. 199ā232. Springer, Heidelberg (2009)
Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB Journal 11(1), 28ā46 (2002)
Navarro, G., Reyes, N.: Dynamic spatial approximation trees. Journal of Experimental Algorithmics, JEA, 12:1.5:1ā1.5:68 (2008)
Overmars, M., Leeuwen, J.: Two general methods for dynamizing decomposable searching problems. Computing 26, 155ā166 (1981)
Uribe, R., Navarro, G., Barrientos, R.J., MarĆn, M.: An Index Data Structure for Searching in Metric Space Databases. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 611ā617. Springer, Heidelberg (2006)
Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the Fourth Annual Symposium on Discrete Algorithms, pp. 311ā321 (1993)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Naidan, B., Hetland, M.L. (2012). Static-to-Dynamic Transformation for Metric Indexing Structures. In: Navarro, G., Pestov, V. (eds) Similarity Search and Applications. SISAP 2012. Lecture Notes in Computer Science, vol 7404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32153-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-32153-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32152-8
Online ISBN: 978-3-642-32153-5
eBook Packages: Computer ScienceComputer Science (R0)