Skip to main content

Static-to-Dynamic Transformation for Metric Indexing Structures

  • Conference paper
Similarity Search and Applications (SISAP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7404))

Included in the following conference series:

Abstract

In this paper, we study the well-known algorithm of Bentley and Saxe in the context of similarity search in metric spaces. We apply the algorithm to existing static metric index structures, obtaining dynamic ones. We show that the overhead of the Bentley-Saxe method is quite low, and because it facilitates the dynamic use of any state-of-the-art static index method, we can achieve results comparable to, or even surpassing, existing dynamic methods. Another important contribution of our approach is that it is very simple—an important practical consideration. Rather than dealing with the complexities of dynamic tree structures, for example, the core index can be built statically, with full knowledge of its data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic transformation. Journal of Algorithms 1(4), 301–358 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of 21th International Conference on Very Large Data Bases, VLDB, pp. 574–584 (1995)

    Google Scholar 

  3. Brisaboa, N.R., Pedreira, O., Seco, D., Solar, R., Uribe, R.: Clustering-Based Similarity Search in Metric Spaces with Sparse Spatial Centers. In: Geffert, V., KarhumƤki, J., Bertoni, A., Preneel, B., NĆ”vrat, P., BielikovĆ”, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 186–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. ChĆ”vez, E., Navarro, G.: A Probabilistic Spell for the Curse of Dimensionality. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 147–160. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Figueroa, K., Navarro, G., Chavez, E.: Metric spaces library (2010), http://www.sisap.org/Metric_Space_Library.html (downloaded November 15, 2011)

  6. Fu, A.W.-C., Chan, P.M.-S., Cheung, Y.-L., Moon, Y.S.: Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise distances. The VLDB Journal 9(2), 154–173 (2000)

    Article  Google Scholar 

  7. Hetland, M.L.: The Basic Principles of Metric Indexing. In: Coello, C.A.C., Dehuri, S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Mining. SCI, vol. 242, pp. 199–232. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB Journal 11(1), 28–46 (2002)

    Article  Google Scholar 

  9. Navarro, G., Reyes, N.: Dynamic spatial approximation trees. Journal of Experimental Algorithmics, JEA, 12:1.5:1–1.5:68 (2008)

    Google Scholar 

  10. Overmars, M., Leeuwen, J.: Two general methods for dynamizing decomposable searching problems. Computing 26, 155–166 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Uribe, R., Navarro, G., Barrientos, R.J., MarĆ­n, M.: An Index Data Structure for Searching in Metric Space Databases. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 611–617. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the Fourth Annual Symposium on Discrete Algorithms, pp. 311–321 (1993)

    Google Scholar 

  13. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naidan, B., Hetland, M.L. (2012). Static-to-Dynamic Transformation for Metric Indexing Structures. In: Navarro, G., Pestov, V. (eds) Similarity Search and Applications. SISAP 2012. Lecture Notes in Computer Science, vol 7404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32153-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32153-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32152-8

  • Online ISBN: 978-3-642-32153-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics