Skip to main content

Space and Energy Efficient Computation with DNA Strand Displacement Systems

  • Conference paper
DNA Computing and Molecular Programming (DNA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7433))

Included in the following conference series:

Abstract

Chemical reaction networks (CRN’s) are important models of molecular programming that can be realized by logically reversible, and thus energy efficient, DNA strand displacement systems (DSD’s). Qian et al. [12] showed that energy efficient DSD’s are Turing-universal; however their simulation of a computation requires space (or volume) proportional to the number of steps of the computation. Here we show that polynomially space bounded computations can be simulated in both a space and energy efficient manner using logically reversible CRN’s and DSD’s. A consequence of our proofs is that determining whether a particular molecular species can be produced from an initial pool of molecules of a CRN or DSD is PSPACE-hard, and thus also verifying the correctness of CRN’s and DSD’s is PSPACE-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H.: Logical reversibility of computation. IBM journal of Research and Development 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  2. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM Journal on Computing 18(4), 766–776 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for Petri nets and commutative semigroups. In: Proceedings of the Eigth Annual ACM Symposium on Theory of Computing, pp. 50–54. ACM (1976)

    Google Scholar 

  4. Condon, A., Hu, A., Maňuch, J., Thachuk, C.: Less Haste, Less Waste: On Recycling and Its Limits in Strand Displacement Systems. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 84–99. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley (1971)

    Google Scholar 

  6. Lakin, M.R., Phillips, A.: Modelling, Simulating and Verifying Turing-Powerful Strand Displacement Systems. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. Journal of the Royal Society Interface (2012)

    Google Scholar 

  8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. Journal of Computer Systems Science 60(2), 354–367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardelli, L.: Two-domain DNA strand displacement. In: Proc. of Developments in Computational Models (DCM 2010). Electronic Proceedings in Theoretical Computer Science, vol. 26, pp. 47–61 (2010)

    Google Scholar 

  11. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  12. Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-Universal Computation with DNA Polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  14. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  15. Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  16. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Winfree, E.: Personal communication (2012)

    Google Scholar 

  18. Zavattaro, G., Cardelli, L.: Termination Problems in Chemical Kinetics. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thachuk, C., Condon, A. (2012). Space and Energy Efficient Computation with DNA Strand Displacement Systems. In: Stefanovic, D., Turberfield, A. (eds) DNA Computing and Molecular Programming. DNA 2012. Lecture Notes in Computer Science, vol 7433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32208-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32208-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32207-5

  • Online ISBN: 978-3-642-32208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics