Abstract
In this paper we consider the following variant of the well-known Monge-Kantorovich transportation problem. Let S be a set of n point sites in ℝd. A bounded set C ⊂ ℝd is to be distributed among the sites p ∈ S such that (i), each p receives a subset C p of prescribed volume and (ii), the average distance of all points z of C from their respective sites p is minimized. In our model, volume is quantified by a measure μ, and the distance between a site p and a point z is given by a function d p (z). Under quite liberal technical assumptions on C and on the functions d p (·) we show that a solution of minimum total cost can be obtained by intersecting with C the Voronoi diagram of the sites in S, based on the functions d p (·) equipped with suitable additive weights. Moreover, this optimum partition is unique, up to subsets of C of measure zero. Unlike the deep analytic methods of classical transportation theory, our proof is based on direct geometric arguments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Appell, P.: Mémoire sur les déblais et les remblais des systèmes continues ou discontinus. Mémoires présentes par divers Savants à l’Academie des Sciences de l’Institut de France 29, 1–208 (1887)
Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)
Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, G. (eds.) Handbook on Computational Geometry, pp. 201–290. Elsevier (1999)
Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)
Hatcher, A.: Algebraic Topology. Cambridge University Press (2001)
Kantorovich, L.: On a problem of Monge. Uspekhi Math. Nauk. 3, 225–226 (1948) (in Russian)
Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année 29, 666–704 (1781)
Rote, G.: Two applications of point matching. In: Abstracts of the 25th European Workshop on Computational Geometry (EuroCG 2009), pp. 187–189.
Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proceedings International Conference on Computer Vision (ICCV 1998), pp. 59–66 (1998)
Sharathkumar, R., Agarwal, P.K.: Algorithms for the transportation problem in geometric settings. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 306–317 (2012)
Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18, 1201–1225 (1989)
Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geiß, D., Klein, R., Penninger, R. (2012). Optimally Solving a Transportation Problem Using Voronoi Diagrams. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-32241-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32240-2
Online ISBN: 978-3-642-32241-9
eBook Packages: Computer ScienceComputer Science (R0)