Skip to main content

Optimally Solving a Transportation Problem Using Voronoi Diagrams

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

  • 1123 Accesses

Abstract

In this paper we consider the following variant of the well-known Monge-Kantorovich transportation problem. Let S be a set of n point sites in ℝd. A bounded set C ⊂ ℝd is to be distributed among the sites p ∈ S such that (i), each p receives a subset C p of prescribed volume and (ii), the average distance of all points z of C from their respective sites p is minimized. In our model, volume is quantified by a measure μ, and the distance between a site p and a point z is given by a function d p (z). Under quite liberal technical assumptions on C and on the functions d p (·) we show that a solution of minimum total cost can be obtained by intersecting with C the Voronoi diagram of the sites in S, based on the functions d p (·) equipped with suitable additive weights. Moreover, this optimum partition is unique, up to subsets of C of measure zero. Unlike the deep analytic methods of classical transportation theory, our proof is based on direct geometric arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appell, P.: Mémoire sur les déblais et les remblais des systèmes continues ou discontinus. Mémoires présentes par divers Savants à l’Academie des Sciences de l’Institut de France 29, 1–208 (1887)

    MathSciNet  Google Scholar 

  2. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, G. (eds.) Handbook on Computational Geometry, pp. 201–290. Elsevier (1999)

    Google Scholar 

  4. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hatcher, A.: Algebraic Topology. Cambridge University Press (2001)

    Google Scholar 

  6. Kantorovich, L.: On a problem of Monge. Uspekhi Math. Nauk. 3, 225–226 (1948) (in Russian)

    Google Scholar 

  7. Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année 29, 666–704 (1781)

    Google Scholar 

  8. Rote, G.: Two applications of point matching. In: Abstracts of the 25th European Workshop on Computational Geometry (EuroCG 2009), pp. 187–189.

    Google Scholar 

  9. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proceedings International Conference on Computer Vision (ICCV 1998), pp. 59–66 (1998)

    Google Scholar 

  10. Sharathkumar, R., Agarwal, P.K.: Algorithms for the transportation problem in geometric settings. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 306–317 (2012)

    Google Scholar 

  11. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18, 1201–1225 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geiß, D., Klein, R., Penninger, R. (2012). Optimally Solving a Transportation Problem Using Voronoi Diagrams. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics