Skip to main content

On TC0 Lower Bounds for the Permanent

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

Abstract

In this paper we consider the problem of proving lower bounds for the permanent. An ongoing line of research has shown super-polynomial lower bounds for slightly-non-uniform small-depth threshold and arithmetic circuits [1,2,3,4]. We prove a new parameterized lower bound that includes each of the previous results as sub-cases. Our main result implies that the permanent does not have Boolean threshold circuits of the following kinds.

  1. 1

    Depth O(1), poly − log(n) bits of non-uniformity, and size s(n) such that for all constants c, s (c)(n) < 2n. The size s must satisfy another technical condition that is true of functions normally dealt with (such as compositions of polynomials, logarithms, and exponentials).

  2. 2

    Depth o(loglogn), poly − log(n) bits of non-uniformity, and size n O(1).

  3. 3

    Depth O(1), n o(1) bits of non-uniformity, and size n O(1).

Our proof yields a new “either or” hardness result. One instantiation is that either NP does not have polynomial-size constant-depth threshold circuits that use n o(1) bits of non-uniformity, or the permanent does not have polynomial-size general circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical Computer Science (1999)

    Google Scholar 

  2. Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-constant-depth threshold circuits for the permanent. In: Proceedings of the IEEE Conference on Computational Complexity (CCC), pp. 35–40 (2009)

    Google Scholar 

  3. Jansen, M., Santhanam, R.: Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 724–735. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Jansen, M., Santhanam, R.: Marginal hitting sets imply super-polynomial lower bounds for permanent. In: Innovations in Theoretical Computer Science (2012)

    Google Scholar 

  5. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3, 307–318 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 220–229 (1997)

    Google Scholar 

  8. Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: Proceedings of the IEEE Conference on Computational Complexity (CCC), pp. 8–12 (1998)

    Google Scholar 

  9. Miltersen, P.B., Vinodchandran, N.V., Watanabe, O.: Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 210–220. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Williams, R.: Non-uniform ACC circuit lower bounds. In: Proceedings of the IEEE Conference on Computational Complexity (CCC), pp. 115–125 (2011)

    Google Scholar 

  11. Allender, E.: Circuit complexity before the dawn of the new millennium. In: Proceedings of the Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 1–18 (1996)

    Google Scholar 

  12. Kinne, J., van Melkebeek, D., Shaltiel, R.: Pseudorandom Generators and Typically-Correct Derandomization. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 574–587. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Dvir, Z., Shpilka, A., Yehudayoff, A.: Hardness-randomness tradeoffs for bounded depth arithmetic circuits. SIAM Journal on Computing 39(4), 1279–1293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zanko, V.: #P-completeness via many-one reductions. International Journal of Foundations of Computer Science 2, 77–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20, 865–877 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kannan, R.: Circuit-size lower bounds and nonreducibility to sparse sets. Information and Control 55, 40–56 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1/2), 1–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aaronson, S., van Melkebeek, D.: A note on circuit lower bounds from derandomization. Electronic Colloquium on Computational Complexity 17 (2010)

    Google Scholar 

  19. Vinodchandran, N.V.: A note on the circuit complexity of PP. Theoretical Computer Science 347(1-2), 415–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences 65(4), 672–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, R., Kabanets, V.: Lower bounds against weakly uniform circuits. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 408–419. Springer, Heidelberg (2012)

    Google Scholar 

  22. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kinne, J. (2012). On TC0 Lower Bounds for the Permanent. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics