Abstract
In this paper we consider the problem of proving lower bounds for the permanent. An ongoing line of research has shown super-polynomial lower bounds for slightly-non-uniform small-depth threshold and arithmetic circuits [1,2,3,4]. We prove a new parameterized lower bound that includes each of the previous results as sub-cases. Our main result implies that the permanent does not have Boolean threshold circuits of the following kinds.
-
1
Depth O(1), poly − log(n) bits of non-uniformity, and size s(n) such that for all constants c, s (c)(n) < 2n. The size s must satisfy another technical condition that is true of functions normally dealt with (such as compositions of polynomials, logarithms, and exponentials).
-
2
Depth o(loglogn), poly − log(n) bits of non-uniformity, and size n O(1).
-
3
Depth O(1), n o(1) bits of non-uniformity, and size n O(1).
Our proof yields a new “either or” hardness result. One instantiation is that either NP does not have polynomial-size constant-depth threshold circuits that use n o(1) bits of non-uniformity, or the permanent does not have polynomial-size general circuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E.: The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical Computer Science (1999)
Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-constant-depth threshold circuits for the permanent. In: Proceedings of the IEEE Conference on Computational Complexity (CCC), pp. 35–40 (2009)
Jansen, M., Santhanam, R.: Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 724–735. Springer, Heidelberg (2011)
Jansen, M., Santhanam, R.: Marginal hitting sets imply super-polynomial lower bounds for permanent. In: Innovations in Theoretical Computer Science (2012)
Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)
Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3, 307–318 (1993)
Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 220–229 (1997)
Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: Proceedings of the IEEE Conference on Computational Complexity (CCC), pp. 8–12 (1998)
Miltersen, P.B., Vinodchandran, N.V., Watanabe, O.: Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 210–220. Springer, Heidelberg (1999)
Williams, R.: Non-uniform ACC circuit lower bounds. In: Proceedings of the IEEE Conference on Computational Complexity (CCC), pp. 115–125 (2011)
Allender, E.: Circuit complexity before the dawn of the new millennium. In: Proceedings of the Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 1–18 (1996)
Kinne, J., van Melkebeek, D., Shaltiel, R.: Pseudorandom Generators and Typically-Correct Derandomization. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 574–587. Springer, Heidelberg (2009)
Dvir, Z., Shpilka, A., Yehudayoff, A.: Hardness-randomness tradeoffs for bounded depth arithmetic circuits. SIAM Journal on Computing 39(4), 1279–1293 (2009)
Zanko, V.: #P-completeness via many-one reductions. International Journal of Foundations of Computer Science 2, 77–82 (1991)
Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20, 865–877 (1991)
Kannan, R.: Circuit-size lower bounds and nonreducibility to sparse sets. Information and Control 55, 40–56 (1982)
Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1/2), 1–46 (2004)
Aaronson, S., van Melkebeek, D.: A note on circuit lower bounds from derandomization. Electronic Colloquium on Computational Complexity 17 (2010)
Vinodchandran, N.V.: A note on the circuit complexity of PP. Theoretical Computer Science 347(1-2), 415–418 (2005)
Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences 65(4), 672–694 (2002)
Chen, R., Kabanets, V.: Lower bounds against weakly uniform circuits. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 408–419. Springer, Heidelberg (2012)
Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kinne, J. (2012). On TC0 Lower Bounds for the Permanent. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-32241-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32240-2
Online ISBN: 978-3-642-32241-9
eBook Packages: Computer ScienceComputer Science (R0)