Abstract
Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has a second such pair. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form \(\{\mathbf{x}\in\mathbb{R}^n\,|\,A\mathbf{x}=\mathbf{b}\ \mbox{and}\ \mathbf{x}\geq 0\}\) and a list of its V vertices, we describe an O(n) test to identify whether any two given vertices are adjacent. For simple polytopes this test is perfect; for non-simple polytopes it may be indeterminate, and instead acts as a filter to identify non-adjacent pairs. Our test requires an O(n 2 V + nV 2) precomputation, which is acceptable in settings such as all-pairs adjacency testing. These results improve upon the more general O(nV) combinatorial and O(n 3) algebraic adjacency tests from the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 177–198. Birkhäuser, Basel (2000)
Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)
Avis, D., Rosenberg, G.D., Savani, R., von Stengel, B.: Enumeration of Nash equilibria for two-player games. Econom. Theory 42(1), 9–37 (2010)
Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13(1), 1–24 (1998)
Burton, B.A.: Optimizing the double description method for normal surface enumeration. Math. Comp. 79(269), 453–484 (2010)
Felikson, A., Tumarkin, P.: Coxeter polytopes with a unique pair of non-intersecting facets. J. Combin. Theory Ser. A 116(4), 875–902 (2009)
Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996)
Jansen, M.J.M.: Maximal Nash subsets for bimatrix games. Naval Res. Logist. Quart. 28(1), 147–152 (1981)
Kim, E.D., Santos, F.: An update on the Hirsch conjecture. Jahresber. Dtsch. Math.-Ver. 112(2), 73–98 (2010)
Klee, V., Walkup, D.W.: The d-step conjecture for polyhedra of dimension d < 6. Acta Math. 117, 53–78 (1967)
Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd edn. Addison-Wesley, Reading (1998)
Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. J. Soc. Indust. Appl. Math. 12(2), 413–423 (1964)
McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)
Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II. Annals of Mathematics Studies, vol. 28, pp. 51–73. Princeton University Press, Princeton (1953)
Santos, F.: A counterexample to the Hirsch conjecture. To appear in Ann. of Math. (2) (2010), arXiv: 1006.2814
Winkels, H.M.: An algorithm to determine all equilibrium points of a bimatrix game. In: Game Theory and Related Topics (Proc. Sem., Bonn and Hagen, 1978), pp. 137–148. North-Holland, Amsterdam (1979)
Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burton, B.A. (2012). Complementary Vertices and Adjacency Testing in Polytopes. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-32241-9_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32240-2
Online ISBN: 978-3-642-32241-9
eBook Packages: Computer ScienceComputer Science (R0)