
Algorithmica (2014) 70:92–111
DOI 10.1007/s00453-013-9819-7

Online Coloring of Bipartite Graphs
with and without Advice

Maria Paola Bianchi ·
Hans-Joachim Böckenhauer · Juraj Hromkovič ·
Lucia Keller

Received: 15 October 2012 / Accepted: 25 July 2013 / Published online: 14 August 2013
© Springer Science+Business Media New York 2013

Abstract In the online version of the well-known graph coloring problem, the
vertices appear one after the other together with the edges to the already known
vertices and have to be irrevocably colored immediately after their appearance. We
consider this problem on bipartite, i.e., two-colorable graphs. We prove that at least
�1.13746 · log2(n) − 0.49887� colors are necessary for any deterministic online al-
gorithm to be able to color any given bipartite graph on n vertices, thus improving on
the previously known lower bound of �log2 n� + 1 for sufficiently large n.

Recently, the advice complexity was introduced as a method for a fine-grained
analysis of the hardness of online problems. We apply this method to the online col-
oring problem and prove (almost) tight linear upper and lower bounds on the advice
complexity of coloring a bipartite graph online optimally or using 3 colors. Moreover,
we prove that O(

√
n) advice bits are sufficient for coloring any bipartite graph on n

vertices with at most �log2 n� colors.

Keywords Online coloring · Lower bounds · Advice complexity · Bipartite graph

A preliminary version of this paper has been presented at the 18th Annual International Computing
and Combinatorics Conference (COCOON 2012).

M.P. Bianchi
Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
e-mail: maria.bianchi@unimi.it

H.-J. Böckenhauer (B) · J. Hromkovič · L. Keller
Department of Computer Science, ETH Zurich, Zurich, Switzerland
e-mail: hjb@inf.ethz.ch

J. Hromkovič
e-mail: juraj.hromkovic@inf.ethz.ch

L. Keller
e-mail: lucia.keller@inf.ethz.ch

mailto:maria.bianchi@unimi.it
mailto:hjb@inf.ethz.ch
mailto:juraj.hromkovic@inf.ethz.ch
mailto:lucia.keller@inf.ethz.ch

Algorithmica (2014) 70:92–111 93

1 Introduction

In an online problem, the input is revealed piecewise in consecutive time steps and
an irrevocable part of the output has to be produced at each time step. For a detailed
introduction and an overview of online problems and algorithms, see, e.g., [4]. One
of the most studied online scenarios is the problem of coloring a graph online. Here,
the vertices of the graph are revealed one after the other, together with the edges
connecting them to the already present vertices. The goal is to assign the minimum
number of colors to these vertices in such a way that no two adjacent vertices get the
same color. As usual in an online setting, each vertex has to be colored before the next
one arrives. The quality of an online algorithm for this problem is usually measured
by the so-called competitive ratio, i.e., the ratio between the number of colors used by
this algorithm and an optimal coloring for the resulting graph as it could be computed
by an offline algorithm with unlimited computing power, knowing the whole graph
in advance.

It turns out that online coloring is a very hard online problem for which no con-
stant competitive ratio is possible [10]. For an overview of results on the online graph
coloring problem, see, e.g., [12, 13]. In particular, some bounds on the chromatic
number of the class Γ (k,n) of k-colorable graphs on n vertices have been proven:
For all k and infinitely many n, there exists a G ∈ Γ (k,n) such that any online
coloring algorithm for G needs at least Ω(((log2 n)/(4k))k−1) colors [17]. On the
other hand, there exists an online algorithm for coloring any graph G ∈ Γ (k,n) with
O(n · log(2k−3)

2 n/ log(2k−4)
2 n) colors [15], where log(k)

2 is the log-function iterated k

times. Even for the very restricted class of bipartite, i.e., two-colorable, graphs, any
online algorithm can be forced to use at least �log2 n�+1 colors for coloring some bi-
partite graph on n vertices [1]. On the other hand, an online algorithm coloring every
bipartite graph with at most 2 log2 n colors is known [15]. In the first part of this paper,
we improve the lower bound for bipartite graphs to �1.13746 · log2(n) − 0.49887�.

The main drawback in the competitive analysis of online algorithms is that an
online algorithm has a huge disadvantage compared to an offline algorithm by not
knowing the future parts of the input. This seems to be a rather unfair comparison
since there is no way to use an offline algorithm in an online setting. Recently, the
model of advice complexity of online problems has been introduced to enable a more
fine-grained analysis of the hardness of online problems. The idea here is to measure
what amount of information about the yet unknown parts of the input is necessary to
compute an optimal (or near-optimal) solution online [3, 5, 7, 11]. For this, we ana-
lyze online algorithms that have access to an arbitrary prefix of an infinite tape with
advice bits that was computed by some oracle knowing the whole input in advance.
The advice complexity of such an algorithm measures how many of these advice bits
the algorithm reads during its computation. As usual, the advice complexity of an
online problem is defined as the minimum amount of advice needed by some al-
gorithm solving the problem. We are especially interested in lower bounds on the
advice complexity. Such lower bounds do not only tell us something about the in-
formation content [11] of online problems, but they also carry over to a randomized
setting where they imply lower bounds on the number of random decisions needed to
compute a good solution [14].

94 Algorithmica (2014) 70:92–111

It turns out that, for some problems, very little advice can drastically improve the
competitive ratio of an online algorithm, e.g., for the simple knapsack problem, i.e.,
where the value and weight of each item are equal, a single bit of advice is sufficient to
jump from being non-competitive at all to 2-competitiveness [2]. On the other hand,
many problems require a linear (or even higher) amount of advice bits for computing
an optimal solution [2, 3, 7]. The advice complexity of a coloring problem was first
investigated in [9] where linear upper and lower bounds for coloring a path were
shown.

In the second part of this paper, we investigate the advice complexity of the online
coloring problem on bipartite graphs. We prove almost tight upper and lower bounds
on the advice complexity of computing an optimal solution, more precisely, for a
graph on n vertices, n−2 advice bits are sufficient and n−3 advice bits are necessary
for this. Moreover, we prove almost matching linear upper and lower bounds on the
advice complexity of computing a 3-coloring, namely an upper bound of n/2 and a
lower bound of n

2 − 4. We complement these results by an algorithm that uses less

than n/
√

2k−1 advice bits for coloring a bipartite graph online with k colors.
The paper is organized as follows. In Sect. 2, we formally define the online color-

ing problem and fix our notation. In Sect. 3, we consider online algorithms without
advice and present the improved lower bound on the number of necessary colors for
deterministic online coloring algorithms. The proof of this lower bound is contained
in Sect. 4, while Sect. 5 is devoted to the advice complexity of the online coloring of
bipartite graphs.

2 Preliminaries

In this section, we fix our notation and formally define the problem we are dealing
with in this paper.

Definition 1 (Coloring) Let G = (V ,E) be an undirected and unweighted graph with
vertex set V = {v1, v2, . . . , vn} and edge set E. A (proper) coloring of a graph G is
a function col : V → S which assigns to every vertex vi ∈ V a color col(vi) ∈ S and
has the property that col(vi) 	= col(vj), for all i, j ∈ {1,2, . . . , n} with {vi, vj } ∈ E.

Usually, we consider the set S = {1,2, . . . , n} ⊂ N
+. Let V ′ ⊆ V , then we denote

by col(V ′) the set of colors assigned to the vertices in V ′. To distinguish the coloring
functions used by different algorithms, we denote, for an algorithm A, its coloring
function by colA. We denote the subgraph of G = (V ,E) induced by a vertex subset
V ′ ⊆ V by G[V ′], i.e., G[V ′] = (V ′,E′), where E′ = {{v,w} ∈ E | v,w ∈ V ′}.

Definition 2 (Online Graph) An instance G≺ = (G,≺) for the online coloring prob-
lem consists of a graph G = (V ,E) and a linear ordering ≺ on the vertex set
V = {v1, v2, . . . , vn} with vi ≺ vj for i < j . In the online representation G≺ of the
graph G, the vertices of V appear in the order determined by ≺.

For Vi = {v1, v2, . . . , vi} we denote by G≺[Vi] the online subgraph of G≺ induced
by Vi . Note that G≺[Vn] = G≺.

Algorithmica (2014) 70:92–111 95

Informally speaking, G≺[Vi] is derived from G≺[Vi−1] by adding the vertex vi

together with its edges incident to vertices from Vi−1. Let Gn denote the set of all
online graph instances on n vertices. Then, G is the set of all possible online graph
instances for the online coloring problem for all n ∈ N

+, i.e., G = ⋃
n∈N+ Gn.

With this, we can formally define the online coloring problem.

Definition 3 (Online Coloring Problem)

Input: G≺ = (G,≺) ∈ G with G = (V ,E) and V = {v1, v2, . . . , vn}.
Output: (c1, c2, . . . , cn) ∈ (N+)n such that col(vi) = ci and col : Vi → N

+ is a col-
oring, for all i ∈ {1,2, . . . , n}

Cost: Number of colors used by the coloring.
Goal: Minimum.

The coloring of online graphs G≺ depends on the used algorithm and the ordering
of the vertices. Therefore, we denote by colA,G≺(V ′) the coloring function of a given
algorithm A and an online graph G≺ ∈ Gn for the vertex set V ′ ⊆ Vn. We will omit
the subscript whenever A and G≺ are clear from the context.

In the following, we will restrict our attention to the class of bipartite, i.e., two-
colorable graphs. We denote the subproblem of the online coloring problem restricted
to bipartite input graphs by BIPCOL. In a bipartite graph G = (V (G),E(G)), the
vertex set V (G) can be partitioned into two subsets, called shores and denoted by
S1(G) and S2(G), with the property that the edges in E(G) connect only vertices
from different shores. If the graph is clear from the context, we write V , E, S1, S2

instead of V (G), E(G), S1(G) and S2(G). We say that a color α is common in a
bipartite graph if it appears on both shores of the bipartition.

Given two vertices vi and vj and a time step t , we write vi ↔t vj iff there exists
a path in G≺[Vt] from vi to vj . It is always possible to partition Vt into connected
components according to the equivalence relation ↔t , and we call such components
Ct(vi) = [vi]↔t . In each connected component, the shore partition is unique up to
swapping the shores.

We want to analyze BIPCOL giving bounds on the number of colors used in the
online coloring process. These bounds will always depend on the number n of ver-
tices in the final graph G≺ = G≺[Vn]. Let A be an online coloring algorithm. We de-
note by FA(G≺) = |colA,G≺(Vn)| the number of colors used by A to color the graph
G. Then, FA(n) = maxG∈Gn

FA(G≺) is the maximum number of colors A uses to
color any online graph instance with n vertices in the final graph G≺. We say that
U : N → N is an upper bound on the number of colors sufficient for online coloring,
if there exists an online algorithm A such that, for all n ∈N, we have FA(n) ≤ U(n).
Hence, to get an upper bound U on the number of used colors, it is sufficient to find
a deterministic online algorithm A coloring each graph from Gn using U(n) colors.
Similarly, a function L is a lower bound on the number of colors necessary for on-
line coloring any graph if, for any online algorithm A, there exists an infinite subset
X ⊆ N such that L : X →N and, for all n ∈ X, we have L(n) ≤ FA(n), i.e., if, for ev-
ery algorithm A, for infinitely many n, there is an online graph G≺

A(n) ∈ Gn for which

96 Algorithmica (2014) 70:92–111

A needs at least L(n) colors. Observe that a lower bound L : X → N also implies a
lower bound L̃ : N →N, where L̃(n) = L(m) with m = max{k ∈ X | k ≤ n}.

In the second part of this paper, we study the advice complexity of online coloring
of bipartite graphs. The idea is to consider an oracle that sees the whole input in
advance and writes information about the input onto a binary infinite advice tape
[3, 11]. The algorithm may access an arbitrary prefix of this tape at runtime, and the
amount of advice bits read by the algorithm can serve as a fine-grained measure of the
hardness of online problems. Formally, online algorithms with advice can be defined
as follows.

Definition 4 (Online Algorithm with Advice [3, 11]) Let I = (x1, . . . , xn) be an in-
put of an online minimization problem. An online algorithm A with advice com-
putes the output sequence Aϕ(I) = (y1, . . . , yn) such that yi is computed from
ϕ,x1, . . . , xi , where ϕ is the content of the advice tape, i.e., an infinite binary se-
quence. For some output sequence o, cost(o) denotes the cost of o. An algorithm A

is c-competitive with advice complexity b(n) if there exists some non-negative con-
stant α such that, for every n and for each input sequence I of length at most n, there
exists some ϕ such that cost(Aϕ(I)) ≤ c · cost(Opt(I)) + α and at most the first b(n)

bits of ϕ have been accessed during the computation of Aϕ(I). Here, Opt(I) denotes
an optimal (offline) solution for I . If α = 0, then A is called strictly c-competitive.
A is optimal if it is strictly 1-competitive.

In this paper, we restrict our attention to strict competitiveness. For simplicity, we
call a strictly c-competitive algorithm c-competitive from now on.

3 Online Coloring Without Advice

In this section, we deal with the competitive ratio of deterministic online algorithms
without advice. The following upper bound is well known.

Theorem 1 (Lovász, Saks, and Trotter [15]) There is an online algorithm using at
most 2 log2 n colors for coloring any bipartite graph of n vertices.

Proof Let G≺ be the input instance. We describe the algorithm A that works as fol-
lows: at each step t , consider the component Ct(vt) containing the last revealed ver-
tex. If Ct(vt) contains only vt , i.e., if vt was revealed isolated, A outputs colA(vt) =
1, otherwise it assigns to vt the smallest color not present on the opposite shore of
this component. More formally, assuming vt ∈ S1(Ct (vt)), A outputs

colA(vt) = min {c ≥ 1 | c 	= colA(v) for all v ∈ S2(Ct (vt))}.
By calling B(k) the minimum number of vertices required for A to output color k,

we have that B(2) = 2 and B(3) = 4. We inductively show that B(k) ≥ 2
k
2 , which

implies that, on an instance of n vertices, A uses at most 2 log2(n) colors.
If colA(vt) = k and vt ∈ S1(Ct (vt)), it means that on the shore S2(Ct (vt)) all

colors from 1 to k − 1 are present. Similarly, since color k − 1 was assigned to

Algorithmica (2014) 70:92–111 97

some vertex in S2(Ct (vt)), then on the shore S1(Ct (vt)) all colors from 1 to k − 2
are present. Since there are two vertices vp ∈ S1(Ct (vt)) and vq ∈ S2(Ct (vt)) such
that colA(vp) = colA(vq) = k − 2, the only way A would assign that color is if vp

and vq were on two different components of Gr , where r = max{p,q}. By induc-

tion hypothesis, each of these components must have at least 2
k−2

2 vertices, therefore

B(k) ≥ 2 · 2
k−2

2 = 2
k
2 . �

There is also a well-known lower bound which even holds for trees.

Theorem 2 (Bean [1]) For every k ∈ N
+, there exists a tree T ≺

k on 2k−1 vertices
such that, for every deterministic online coloring algorithm A, colA(T ≺

k) ≥ k.

Theorem 2 immediately implies that there exists an infinite number of trees (and
thus of bipartite graphs) forcing any online algorithm to use at least log2 n + 1 col-
ors on any graph on n vertices from this class. In the remainder of this section, we
improve on this result by describing a graph class, which forces every coloring algo-
rithm A to use even more colors on infinitely many graphs of the class. This class is
built recursively. In the proof, we will focus, for a fixed deterministic online coloring
algorithm A, only on those G≺[Vi]’s in an instance G≺ ∈ Gn in which the new vertex
vi gets a new color with respect to the previous graph G≺[Vi−1].
Lemma 1 For every k ∈ N

+ and every online coloring algorithm A, there exists an
online graph G≺

A(k) such that:

1. FA(G≺
A(k)) ≥ k,

2. FA(S1(G
≺
A(k))) ≥ k − 2,

3. FA(S2(G
≺
A(k))) ≥ k − 1,

4. |V (G≺
A(k))| ≤ W(k) := W(k − 1) + W(k − 2) + W(k − 3) + 1, for k ≥ 3, and

W(0) = 0, W(1) = 1, and W(2) = 2.

Consequently, W(k) is the maximum number of vertices that a graph needs in
order to force an arbitrary algorithm A to use at least k colors.

We will prove Lemma 1 in the following section. The recurrence given by property
4 of Lemma 1 can be resolved as follows.

Lemma 2 Let W(k) be defined as in Lemma 1. Then,

W(k) ≤ 1.35527 · 1.83929k − 0.400611.

Proof It can be easily shown by induction that W(k) = ∑k+1
n=0 T (n), where T (n) is

the n-th Tribonacci number (see [8, 16]). The number T (n) can be computed as
follows:

T (n) = 3b · (1
3 (a+ + a− + 1))n

b2 − 2b + 4
≤ 0.336229 · 1.83929n,

where a+ = (19 + 3
√

33)
1
3 , a− = (19 − 3

√
33)

1
3 , and b = (586 + 102

√
33)

1
3 . Sum-

ming up the values of T (n) for n ∈ {0, . . . , k + 1} gives the claimed result. �

98 Algorithmica (2014) 70:92–111

Theorem 3 For any online coloring algorithm A, there exists an infinite sequence of
online graphs G≺

A(k) ∈ Gnk
with nk < nk+1 for all k ∈N such that A needs at least

�1.13746 · log2(nk) − 0.49887�
colors to color G≺

A(k).

Proof The claim follows immediately from Lemmas 1 and 2 by resolving the follow-
ing inequality for k:

nk ≤ 1.35527 · 1.83929k

=⇒ log2(nk) ≤ log2(1.35527) + k · log2(1.83929)

=⇒ k ≥ log2(nk) − log2(1.35527)

log2(1.83929)
= 1.13746 · log2(nk) − 0.49887 �

4 Proof of Lemma 1

In this section, we prove Lemma 1. We proceed by an induction over k, the number
of colors. For every k, we generate a class G̃(k) consisting of online graphs defined
as

G̃(k) = {G≺
B(k) | B is an online coloring algorithm and

properties 1 to 4 of Lemma 1 are satisfied}.

Hence, for a fixed k, we will find in G̃(k), for every online coloring algorithm B , an
instance G≺

B(k) that forces B to use at least k colors to color G≺
B(k). Those instances

are built inductively. We will prove that we can construct, for any online coloring
algorithm A, a hard instance G≺

A(k), using three online graphs G≺
k−1 ∈ G̃(k − 1),

G≺
k−2 ∈ G̃(k − 2), G≺

k−3 ∈ G̃(k − 3), that are revealed in this order, and an additional
vertex v (see Fig. 1).

Let H(k) be the induction hypothesis, formulated as follows:

H(k): For all j ≤ k and all online algorithms B, there exists
a graph G≺

B(j) ∈ G̃(j).

Assuming H(k−1) holds, the hypothesis states that, for every online algorithm A,
a graph G≺

k−1 = G≺
A(k−1) ∈ G̃(k−1) satisfying all the properties of Lemma 1 exists.

To show the existence of the second and third constructed subgraph, G≺
k−2 ∈ G̃(k −2)

and G≺
k−3 ∈ G̃(k − 3), we have to take into account that the algorithm A already

knows a part of the instance, and hence it may behave differently from the case where
there is no part known.

We merge the shores of G≺
k−1, G≺

k−2, and G≺
k−3 in an appropriate way and, using

an additional vertex v, we ensure that the resulting graph G≺
A(k) is in G̃(k). In some

cases, we do not need all four components to guarantee that all four properties of
Lemma 1 are satisfied.

Algorithmica (2014) 70:92–111 99

Fig. 1 Using three online graphs G≺
k−1 ∈ G̃(k − 1), G≺

k−2 ∈ G̃(k − 2), G≺
k−3 ∈ G̃(k − 3) and a vertex v,

we can construct, for any online algorithm A, a new online graph G≺
A

(k) ∈ G̃(k)

Fig. 2 Base cases: W.l.o.g., the
vertices are colored as indicated.
The indices of the vertices
indicate their order of
appearance

We merge two online graph instances G≺[V] = (G,≺) ∈ G with V = {v1, v2, . . . ,

vn} and G
≺[V ′] = (G′,≺) ∈ G with V ′ = {v′

1, v
′
2, . . . , v

′
m} to an instance M≺[V ′′] =

G≺[V] ◦ G
≺[V ′], defined as

M≺[V ′′] = (G ∪ G′,≺) ∈ G,

where, for two graphs G = (V ,E) and G′ = (V ′,E′) with V ∩ V ′ = ∅, G ∪ G′ is
defined as the graph (V ′′ = {v1, . . . , vn, v

′
1, . . . , v

′
m},E ∪ E′) and vn ≺ v′

1.

4.1 Base Cases (k ≤ 3)

For k ∈ {0,1,2}, it is easy to see that the hypothesis H(k) is satisfied (see Fig. 2).
In case k = 3, for every online coloring algorithm A, G≺

A(3) can be constructed
recursively using two graphs G≺

2 ∈ G̃(2), G≺
1 ∈ G̃(1) and possibly a new vertex.

The vertices of G≺
2 = G≺

A(3)[{v1, v2}] are colored, w.l.o.g., with 1 and 2, and
G≺

1 = G≺
A(3)[{v3}] can be colored, w.l.o.g., with 1, 2 or 3 (see Fig. 3).

If the algorithm colors v1, v2, and v3 with different colors, as shown in case (c)
of Fig. 3, obviously all properties of H(3) are already satisfied. Otherwise, we have

100 Algorithmica (2014) 70:92–111

Fig. 3 Case k = 3: For any behaviour of an algorithm A, we can construct the graph G≺
A

(3) using graphs

G≺
2 = G≺

A
(3)[{v1, v2}] ∈ G̃(2) and G≺

1 = G≺
A

(3)[{v3}] ∈ G̃(1) that force A to use a third color

to add one new vertex v4, which is connected to two vertices with different colors to
force every online coloring algorithm A to use a third color (see (a) and (b) of Fig. 3).

4.2 Inductive Step (k ≥ 4)

For every online algorithm A and every k ∈ N
+, we construct G≺

A(k) in four steps
using three graphs G≺

k−1 ∈ G̃(k − 1), G≺
k−2 ∈ G̃(k − 2), G≺

k−3 ∈ G̃(k − 3), and an
additional vertex v.

First, assuming that H(k − 1) holds, we show that, for every algorithm A, we
can construct three graphs G≺

k−1, G≺
k−2, and G≺

k−3 in this order satisfying all the
properties of Lemma 1. Then, we show that we can merge them, using an additional
vertex v, to a graph G≺

A(k) ∈ G̃(k).

4.2.1 Existence of the Graphs G≺
k−1, G≺

k−2, and G≺
k−3

We assume that H(k − 1) holds. Hence, for every online coloring algorithm B and
j ∈ {k − 1, k − 2, k − 3} there exists a graph G≺

B(j) ∈ G̃(j).

Step 1: Because of H(k − 1), we know that a graph G≺
k−1 = G≺

A(k − 1) exists.
Step 2: In the next phase, algorithm A receives a second subgraph. We cannot simply

use the graph G≺
A(k − 2) here, whose existence is guaranteed by H(k − 2), since

H(k−2) guarantees the hardness of this input only in the case that A reads it from
its initial configuration. Having already read G≺

k−1, A might behave differently
on G≺

A(k − 2). We denote by A|G≺
k−1

the work of algorithm A having already
processed the graph G≺

k−1. A|G≺
k−1

can be simulated by an algorithm B , which
does the same work as A|G≺

k−1
but which did not receive any other graph before.

In other words, if we think of the algorithms as Turing machines, B uses the same
transitions as A, but its initial configuration (state and tape content) is the same
as the configuration reached by A after processing G≺

k−1. Because of H(k − 1),
and thus H(k − 2), we know that, for such an algorithm B , there is a graph
G≺

k−2 = G≺
B(k − 2) = G≺

A|G≺
k−1

(k − 2) ∈ G̃(k − 2).

Step 3: Now, algorithm A gets a third subgraph. Again, the work of A|G≺
k−1◦G≺

k−2
can

be simulated by an algorithm C. Because of the induction hypothesis, a graph
G≺

k−3 = G≺
C(k − 3) = G≺

A|G≺
k−1◦G≺

k−2

(k − 3) exists.

Hence, we have the graphs G≺
k−1, G≺

k−2, and G≺
k−3 at our disposal and can force a

new color, possibly with the help of an additional vertex v, as follows.

Algorithmica (2014) 70:92–111 101

Fig. 4 There are four cases how the colors in G≺
k−1 can be distributed

4.2.2 Construction of Graph G≺
A(k)

The graphs G≺
k−1, G≺

k−2, and G≺
k−3 are presented in this order. Beginning with graph

G≺
k−1, we distinguish four possible cases for an online algorithm A (see Fig. 4):

(A) A uses, w.l.o.g., ≥ k − 2 colors on S1(G
≺
k−1) and ≥ k − 1 colors on S2(G

≺
k−1).

(B) A uses, w.l.o.g., k − 3 colors on S1(G
≺
k−1) and ≥ k − 1 colors on S2(G

≺
k−1).

(C) A uses, w.l.o.g., ≥ k − 2 colors on S1(G
≺
k−1) and k − 2 colors on S2(G

≺
k−1).

(D) A uses k − 3 colors on S1(G
≺
k−1) and k − 2 colors on S2(G

≺
k−1).

Since H(k − 1) holds, graph G≺
k−1 is colored by algorithm A with at least k − 1

colors, and S1(G
≺
k−1) contains at least k − 3 and S2(G

≺
k−1) at least k − 2 colors.

Therefore, after constructing G≺
k−1, the algorithm A encounters one of the four cases

above.
To finish the construction, we have to ensure that the final graph contains at least

k colors. If this is not yet the case for G≺
k−1, we need to force the algorithm to use a

new color k.
We will show that, in order to satisfy the properties 2 and 3 of Lemma 1, either the

graphs G≺
k−2 and G≺

k−3 contain some of the colors that appear only on one shore of
G≺

k−1, or there are enough additional colors in G≺
k−2 and G≺

k−3, which do not appear
in G≺

k−1. Only in some cases will we need all three graphs G≺
k−1, G≺

k−2, G≺
k−3 and

the vertex v. In many cases, a subset of those graphs is sufficient to construct a graph
G≺

A(k) ∈ G̃(k).

4.2.3 (A) |col(S1(G
≺
k−1))| ≥ k − 2 and |col(S2(G

≺
k−1))| ≥ k − 1

If the graph G≺
k−1 contains at least k colors, properties 1, 2, and 3 of Lemma 1 are

satisfied. Furthermore, we have

|V (G≺
A(k))| = |V (G≺

k−1)| ≤ W(k − 1) ≤ W(k − 1) + W(k − 2) + W(k − 3) + 1

= W(k).

Hence, all the properties of Lemma 1 are satisfied and we can finish the construction
without using additional subgraphs.

Now, assume G≺
k−1 contains only k − 1 colors. To satisfy property 1, we need to

force every algorithm to use one more color. Connecting an additional vertex v to
all vertices in S2(G

≺
k−1), and thus adding it to S1(G

≺
k−1), forces the algorithm to use

102 Algorithmica (2014) 70:92–111

color k:

1 2 . . . k − 2

1 2 . . . k − 2 k − 1

kcol(S1(G≺
k−1) ∪ {v}) :

col(S2(G≺
k−1)) :

We have

|V (G≺
A(k))| = |V (G≺

k−1)| + 1 ≤ W(k − 1) + 1

≤ W(k − 1) + W(k − 2) + W(k − 3) + 1 = W(k)

and therefore all properties of Lemma 1 are satisfied.

4.2.4 (B) |col(S1(G
≺
k−1))| = k − 3 and |col(S2(G

≺
k−1))| ≥ k − 1

Because we assume that the induction hypothesis holds, G≺
k−2 is colored by al-

gorithm A with at least k − 2 colors. Therefore, there exists, w.l.o.g., a color
a ∈ col(S1(G

≺
k−2)) such that a /∈ col(S1(G

≺
k−1)). Hence, merging G≺

k−1 and G≺
k−2

such that color a is added to shore S1, we obtain an analogous situation as in case (A):

1 2 . . . k − 3 a

1 2 . . . k − 2 k − 1

col(S1(G≺
k−1) ∪ S1(G≺

k−2)) :
col(S2(G≺

k−1) ∪ S2(G≺
k−2)) :

4.2.5 (C) |col(S1(G
≺
k−1))| ≥ k − 2 and |col(S2(G

≺
k−1))| = k − 2

If |col(S1(G
≺
k−1))| ≥ k −1 holds, we can swap the shores and obtain case (A). There-

fore, we can assume that |col(S1(G
≺
k−1))| = k − 2.

Because G≺
k−1 is colored with at least k − 1 colors, its shores can have at most

k − 3 common colors:

1 2 . . . k − 3 b

1 2 . . . k − 3 a

col(S1(G≺
k−1)) :

col(S2(G≺
k−1)) :

Hence, G≺
k−2 has to contain either color a, b or a new color c /∈ col(G≺

k−1), w.l.o.g.
b ∈ col(S1(G

≺
k−2)) or c ∈ col(S1(G

≺
k−2)). Merging G≺

k−1 and G≺
k−2 in an appropriate

way leads again to a situation as in case (A):

1 2 . . . k − 3 b

1 2 . . . k − 3 a b

1 2 . . . k − 3 b

1 2 . . . k − 3 a cor

col(S1(G≺
k−1) ∪ S2(G≺

k−2)) :
col(S2(G≺

k−1) ∪ S1(G≺
k−2)) :

Algorithmica (2014) 70:92–111 103

4.2.6 (D) |col(S1(G
≺
k−1))| = k − 3 and |col(S2(G

≺
k−1))| = k − 2

The shores of G≺
k−1 contain at most k − 4 common colors since we have to have at

least k − 1 colors in total:

1 2 . . . k − 4 c

1 2 . . . k − 4 a b

col(S1(G≺
k−1)) :

col(S2(G≺
k−1)) :

To satisfy all properties of Lemma 1, we need either one additional color on each
shore or two additional colors in S1(G

≺
k−1). And we have to force a new color k for

the construction of graph G≺
A(k)≺. We distinguish five cases according to the sets of

colors present in G≺
k−2 and G≺

k−3:

1. There are d ∈ col(G≺
k−2) and e ∈ col(G≺

k−3) with d, e /∈ col(G≺
k−1):

W.l.o.g., d ∈ col(S1(G
≺
k−2)) and e ∈ col(S1(G

≺
k−3)). Then the following com-

bination of the shores leads to G≺
A(k) ∈ G̃(k):

1 2 . . . k − 4 c d

1 2 . . . k − 4 a b e

col(S1(G≺
k−1) ∪ S1(G≺

k−2) ∪ S2(G≺
k−3)) :

col(S2(G≺
k−1) ∪ S2(G≺

k−2) ∪ S1(G≺
k−3)) :

The number of colors in S1(G
≺
A(k)) is larger than k − 2 and in S2(G

≺
A(k)) it is

larger than k − 1. The total number of colors is at least k (in the case of d 	= e we
have at least k + 1 colors). And with

|V (G≺
A(k))| = |V (G≺

k−1)| + |V (G≺
k−2)| + |V (G≺

k−3)|
≤ W(k − 1) + W(k − 2) + W(k − 3) ≤ W(k),

we have G≺
A(k) ∈ G̃(k).

2. col(G≺
k−2) ⊆ col(G≺

k−1) and one new color e ∈ col(G≺
k−3) \ col(G≺

k−1):
Since G≺

k−2 contains at least k − 2 colors and it is colored with a subset of col-
ors of G≺

k−1, it has to contain at least one color of the set {a, b}, say a ∈ S1(G
≺
k−2)

and e ∈ col(S1(G
≺
k−3)). Then we get

1 2 . . . k − 4 c a

1 2 . . . k − 4 a b e

col(S1(G≺
k−1) ∪ S1(G≺

k−2) ∪ S2(G≺
k−3)) :

col(S2(G≺
k−1) ∪ S2(G≺

k−2) ∪ S1(G≺
k−3)) :

Then G≺
A(k) ∈ G̃(k) since

|V (G≺
A(k))| = |V (G≺

k−1)| + |V (G≺
k−2)| + |V (G≺

k−3)|
≤ W(k − 1) + W(k − 2) + W(k − 3) ≤ W(k).

104 Algorithmica (2014) 70:92–111

3. col(G≺
k−3) ⊆ col(G≺

k−1) and one new color d ∈ col(G≺
k−2) \ col(G≺

k−1):
With the same argumentation as above, we conclude that G≺

k−3 must contain at
least one of the colors {a, b, c}. Then, we have the same situation as in the case
before (in the case of c ∈ col(G≺

k−3), the merging of the shores is reversed).

In the following cases, we can assume that

col(G≺
k−2) ⊆ col(G≺

k−1) and col(G≺
k−3) ⊆ col(G≺

k−1).

Because G≺
k−3 is colored with at least k − 3 colors, it contains one of the three colors

{a, b, c}. Analogously, G≺
k−2 contains two of the three colors {a, b, c}. Then, either c

appears in one of the graphs G≺
k−2 or G≺

k−3, or one of the colors {a, b} is in G≺
k−3 and

both a and b are in G≺
k−2:

4. c ∈ col(G≺
k−2) ∪ col(G≺

k−3):
W.l.o.g. , assume c ∈ col(S1(G

≺
k−2)). The other cases are analogous.

1 2 . . . k − 4 c

1 2 . . . k − 4 a b c

col(S1(G≺
k−1) ∪ S2(G≺

k−2)) :
col(S2(G≺

k−1) ∪ S1(G≺
k−2)) :

S1(G
≺
k−1) ∪ S2(G

≺
k−2) contains at least k − 3 colors and S2(G

≺
k−1) ∪ S1(G

≺
k−2)

consists of at least k−1 colors. The k-th color, say color k, can be forced by adding
a new vertex v, which is connected to all vertices in S2(G

≺
k−1) ∪ S1(G

≺
k−2). Then,

the resulting graph G≺
A(k) will look as follows:

1 2 . . . k − 4 c

1 2 . . . k − 4 a b c

col(S1(G≺
k−1) ∪ S2(G≺

k−2) ∪ {v}) :
col(S2(G≺

k−1) ∪ S1(G≺
k−2)) :

k

Hence, we have G≺
A(k) ∈ G̃(k) because S1(G

≺
A(k)) contains k − 2 colors,

S2(G
≺
A(k)) is colored with at least k − 1 colors, and

|V (G≺
A(k))| = |V (G≺

k−1)| + |V (G≺
k−2)| + 1

≤ W(k − 1) + W(k − 2) + 1 ≤ W(k).

5. a,b ∈ col(G≺
k−2) and one of those colors is in G≺

k−3:
W.l.o.g., let a ∈ col(S1(G

≺
k−2)) and b ∈ col(S1(G

≺
k−3)). The shores can be

matched as follows:

1 2 . . . k − 4 c a b

1 2 . . . k − 4 a b

col(S1(G≺
k−1) ∪ S1(G≺

k−2) ∪ S1(G≺
k−3)) :

col(S2(G≺
k−1) ∪ S2(G≺

k−2) ∪ S2(G≺
k−3)) :

We can force an algorithm to use color k by introducing a new vertex v that is
connected to all vertices in S1(G

≺
k−1) ∪ S1(G

≺
k−2) ∪ S1(G

≺
k−3):

Algorithmica (2014) 70:92–111 105

1 2 . . . k − 4 c a b

1 2 . . . k − 4 a b

col(S1(G≺
k−1) ∪ S1(G≺

k−2) ∪ S1(G≺
k−3)) :

col(S2(G≺
k−1) ∪ S2(G≺

k−2) ∪ S2(G≺
k−3) ∪ {v}) : k

Now, both shores contain at least k−1 colors and hence G≺
A(k) ∈ G̃(k) because

|V (G≺
A(k))| = |V (G≺

k−1)| + |V (G≺
k−2)| + |V (G≺

k−3)| + 1

≤ W(k − 1) + W(k − 2) + W(k − 3) + 1 = W(k).

Note that this is the hardest case, leading to exactly the recurrence from property
4 in Lemma 1.

5 Advice Complexity

In this section, we investigate the advice complexity of the online coloring problem
on bipartite graphs. We start with giving an upper bound on the amount of advice
needed for achieving an optimal coloring.

Theorem 4 There exists an online algorithm for BIPCOL, which uses at most n − 2
advice bits to be optimal on every instance of length n.

Proof Intuitively, we want to give advice only for those vertices that appear without
connections to the vertices appearing before them. In the following, we call those
vertices isolated (although they might get connected to some other vertices appearing
later). We cannot reach the upper bound of n − 2 by simply asking for one bit of
advice for every vertex that is isolated, except the first and the last (if isolated) vertices
in the input sequence, because this strategy would require knowing the input length
in advance, since the advice tape is infinite and it is up to the algorithm to decide how
many bits to read. Therefore, in order to achieve the desired bound, we present the
algorithm A2 that works as follows.

• The first vertex receives color 1.
• Then the algorithm asks for one bit of advice: if it is 1, then A2 will assign color

1 to every isolated vertex, otherwise it will ask for a bit of advice for every further
isolated vertex, to decide whether to assign color 1 or 2.

• Any vertex that has an edge to some previously received vertex v receives the
opposite color with respect to v.

It is easy to see that, on an input of length n, whenever there are at least n−1 isolated
vertices, assigning color 1 to every isolated vertex is an optimal strategy, therefore the
appropriate advice is a string of length one. This implies that the first advice bit is 0
only when at most n − 2 vertices are isolated in the input sequence. Since the first
vertex is among them and does not need any advice, the upper bound of n−2 holds. �

We can complement this result by an almost matching lower bound.

106 Algorithmica (2014) 70:92–111

Fig. 5 Structure of the graph
Gα used in the proof of
Theorem 5. The set of edges is
E = {{vs , v̂2} | 1 ≤ s ≤ α} ∪
{{vs , v̂1} | α + 1 ≤ s ≤ n − 2} ∪
{{v̂1, v̂2}}

Theorem 5 Any deterministic online algorithm for BIPCOL needs at least n − 3
advice bits to be optimal on every instance of length n.

Proof For a contradiction, assume there exists an algorithm Â for BIPCOL that uses
2 colors and less than n − 3 bits of advice. Given, for any 0 ≤ α ≤ n − 2, the graph
Gα with n vertices described in Fig. 5, we consider as the set of possible instances
of Â any online presentation of Gα , for all 0 ≤ α ≤ n − 2, such that the first n − 2
vertices are presented as a permutation of the vertices {vj }1≤j≤n−2. This means, the
algorithm will always receive isolated vertices until time step n − 2. Hence, Â will
be able to color v̂1 and v̂2 with values in {1,2} only if v1, . . . , vα all have the same
color, and vα+1, . . . , vn−2 all have the opposite color.

Since there is a bijection between the instances and all possible permutations of the
first n − 2 revealed vertices πi = (πi(1),πi(2), . . . , πi(n − 2)), we define an equiv-
alence relation among the input instances in the following way: we say that two in-
stances are equivalent iff the order of the first n − 2 vertices reflects the same shore
partition. More formally, for all t ≤ n − 2 and all permutations πi , let

S(πi(t)) :=
{

S1(G) if πi(t) ∈ S1(G)

S2(G) else

be the shore containing πi(t). Then, πi ∼ πj iff, for all t1, t2 ≤ n − 2,

S(πi(t1)) = S(πi(t2)) ⇐⇒ S(πj (t1)) = S(πj (t2)).

It is not hard to see that ∼ is an equivalence relation and, by a counting argument, the

number of equivalence classes of ∼ is 2n−2

2 = 2n−3.

To prove the claimed lower bound, it is sufficient to show that Â needs a different
advice string for each equivalence class. Suppose, for contradiction, that πi � πj and
Â receives the same advice string for both instances. Then, since all instances look the
same until time step n − 2, this implies col

Â
(πi(t)) = col

Â
(πj (t)), for all t ≤ n − 2.

Because the two instances are not equivalent, there are two values t1, t2 ≤ n − 2,
with t1 	= t2, such that πi(t1) and πi(t2) are on the same shore, while πj (t1) and
πj (t2) are on opposite shores. We then have two cases (see Fig. 6):

Case (a): If col
Â
(πi(t1)) 	= col

Â
(πi(t2)), then in the instance associated to πi , either

v̂1 or v̂2 is forced to have a third color assigned, since one of them will be on the
opposite shore with respect to both πi(t1) and πi(t2).

Case (b): If col
Â
(πi(t1)) = col

Â
(πi(t2)), then col

Â
(πj (t1)) = col

Â
(πj (t2)). W.l.o.g.,

we can assume that, in the instance associated to πj , the vertex v̂1 is on the shore

Algorithmica (2014) 70:92–111 107

Fig. 6 Two non-equivalent instances with the same advice string in the proof of Theorem 5

Fig. 7 The sets Kt and Rt in
the proof of Theorem 6

opposite to πj (t1), hence there is an edge {v̂1,πj (t1)} and as a consequence we
must have col

Â
(v̂1) 	= col

Â
(πj (t1)) and therefore col

Â
(v̂1) 	= col

Â
(πj (t2)), but

since v̂1 and πj (t2) are on the same shore, which is opposite to v̂2, the algorithm
Â is forced to assign a third color to v̂2. �

We now analyze how much advice is sufficient to guarantee a given constant com-
petitive ratio.

Theorem 6 For any integer constant k > 2, there exists an online algorithm for
BIPCOL that needs less than n√

2k−1
advice bits to color every instance of length n

with at most k colors.

Proof We will consider an algorithm Ak that is an adaptation of the algorithm A used
in the proof of Theorem 1: the idea is to make Ak ask for an advice bit only when it is
about to assign color k − 1, in order to avoid assigning that color to vertices on both
shores of the final graph. This implies that the algorithm will always have vertices
of color k − 1 (if any) only on one shore and vertices of color k (if any) only on the
other shore, so that color k + 1 will never be needed.

We now describe the algorithm Ak at step t , when the vertex vt is revealed. Con-
sider the connected component Ct(vt) to which vt belongs at time step t .

By calling Kt (Rt , respectively) the set of colors assigned to vertices of Ct(vt) on
the same (opposite, respectively) shore as vt (see Fig. 7), Ak will choose its output as
follows:

• if Rt does not contain all the colors smaller than k − 1, then colAk
(vt) =

min {c ≥ 1 | c /∈ Rt },
• if either k − 1 ∈ Rt or k ∈ Kt , then colAk

(vt) = k,
• if either k ∈ Rt or k − 1 ∈ Kt , then colAk

(vt) = k − 1,

108 Algorithmica (2014) 70:92–111

Fig. 8 The graph G′ used in the
proof of Theorem 7. The edges
are E′ = {{vs , v

′
s }, {vs , v̂

′}, {v′
s , v̂},

{v̂, v̂′} | 1 ≤ s ≤ n
2 − 1}

• if Rt = {1,2, . . . , k − 2}, then Ak asks for one bit of advice to decide whether to
assign color k − 1 or k to vt .

Algorithm Ak asks for an advice bit only when it is about to assign color k − 1,

which may happen at most every 2
k−1

2 vertices, as shown in the proof of Theorem 1
for algorithm A, so the maximum number of advice bits required is n√

2k−1
. �

The proof of Theorem 6 can be easily extended to the case of using a non-constant
number of colors, only the size n of the input has to be encoded into the advice
string. Since the advice tape is infinite and it is up to the algorithm to decide how
many bits to read, we need to encode the value n using a prefix code, such as Elias’
delta-code [6], otherwise the algorithm could not determine where the encoding of n

stops and where the actual advice string starts. Therefore, the new advice string will
have �log2(n)�+2�log2�log2(n)�+1�+1 additional bits. This leads to the following
corollary.

Corollary 1 There is an online algorithm for BIPCOL that needs at most O(
√

n)

advice bits to color every instance of length n with at most �log2(n)� colors.

In the remainder of this section, we analyze the case of near-optimal coloring
using 3 colors. For this case, Theorem 6 gives the following upper bound on the
advice complexity.

Corollary 2 There exists an online algorithm for BIPCOL that needs at most n
2 ad-

vice bits to color every instance of length n with at most 3 colors.

We conclude with an almost matching lower bound for coloring with 3 colors.

Theorem 7 Any deterministic online algorithm for BIPCOL needs at least n
2 − 4

advice bits to color every instance of length n with at most 3 colors.

Proof Let n ≥ 4 be even. Consider the graph G′ = (V ′,E′) described in Fig. 8. By
calling ct the subgraph of G′ induced by the vertices {vt , v

′
t }, we will consider a set

of instances where the first n
2 − 1 vertices are revealed isolated: each of those can be

arbitrarily chosen between the two shores of ct , for each ct from left to right. After
time step n

2 − 1, the algorithm will receive the corresponding neighbors in each ct

of all the previously received vertices. Finally, the vertices v̂ and v̂′ are revealed. By
calling πr(i) the vertex revealed at step i, we identify any input instance Ir with the

Algorithmica (2014) 70:92–111 109

Fig. 9 If an advice string led to
colσr (t1) = colRσr

(t2), two
colors would be common

binary string σr = (σr(1), . . . , σr (
n
2 − 1)) such that, for all 1 ≤ t ≤ n

2 − 1,

σr(t) =
{

0 if πr(t) = vt

1 if πr(t) = v′
t .

In other words, σr tells us in which order the two vertices in each ct are revealed.
With a slight abuse of notation, we say, for 1 ≤ t ≤ n

2 − 1, that colσr (t) = (α,β)

iff, in Ir , the color assigned to vt is α and the color assigned to v′
t is β . We also write

colRσr
(t) = (β,α) iff colσr (t) = (α,β). A color α is common if it appears on both

shores of the bipartition, i.e., if there exist t1, t2 ∈ {1, . . . , n
2 − 1} such that vt1 and v′

t2
receive both color α. It is easy to see that an instance of the form considered above
can be colored with at most 3 colors only if at most 1 color is common in the first
n − 2 vertices. As a consequence, we can never have an advice string such that

colσr (t1) = colRσr
(t2), (1)

for some t1, t2 ∈ {1, . . . , n
2 − 1}, otherwise two colors would be common (see Fig. 9).

In general, if the advice string on an instance σi is such that either (σi(t1) =
σi(t2) ∧ colσi

(t1) = colσi
(t2)) or (σi(t1) 	= σi(t2) ∧ colσi

(t1) = colRσi
(t2)), then, any

other instance σj such that σi(t1) = σj (t1) ∧ σi(t2) 	= σj (t2) must have a different
advice string, otherwise we would have colσj

(t1) = colRσj
(t2).

Our aim now is to find out, for a fixed instance σi , how many other instances can
have the same advice string as σi . We can distinguish three situations:

1. The advice string on σi is such that the algorithm uses only one pair of colors, i.e.,

∀t : colσi
(t) = (α,β).

In this case, the only other instance, which can have the same advice string and
still avoids two common colors in the first n − 2 vertices is σ̄i , such that σ̄i (t) 	=
σi(t), for all t ∈ {1, . . . , n

2 − 1}, because on any other instance we would have the
situation described in (1).

2. The advice string is such that the algorithm uses only two pairs of colors, more
formally, there exists a partition A,B ⊂ {1, . . . , n

2 − 1}, for two nonempty sets
A,B such that

∀t ∈ A : colσi
(t) = (α,β),

∀t ∈ B : colσi
(t) = (α, γ).

110 Algorithmica (2014) 70:92–111

Table 1 The possible instances using the same advice string as σi in the second situation in the proof of
Theorem 7

σi σ̄i σj σ̄j

t ∈ A σi 1 − σi σi 1 − σi

t ∈ B σi 1 − σi 1 − σi σi

Table 2 The possible instances using the same advice string as σi in the third situation in the proof of
Theorem 7

σi σ̄i σj σ̄j σk σ̄k σh σ̄h

t ∈ A σi 1 − σi σi 1 − σi σi 1 − σi σi 1 − σi

t ∈ B σi 1 − σi σi 1 − σi 1 − σi σi 1 − σi σi

t ∈ C σi 1 − σi 1 − σi σi 1 − σi σi σi 1 − σi

In order to avoid (1), the only instances σ that can have the same advice string as
σi are the ones such that σ(t1) = σ(t2) for any t1, t2 in the same set of the partition
{A,B}, which are the four described in Table 1.

3. The advice string is such that the algorithm uses all three pairs of colors, i.e., there
exists a partition A,B,C ⊂ {1, . . . , n

2 − 1}, with A,B,C 	= ∅, such that

∀t ∈ A : colσi
(t) = (α,β),

∀t ∈ B : colσi
(t) = (α, γ),

∀t ∈ C : colσi
(t) = (β, γ).

Again, in order to avoid (1), an instance σ with the same advice string as σi must
be such that σ(t1) = σ(t2) for any t1, t2 in the same set of the partition {A,B,C}.
This property is satisfied only by the eight instances described in Table 2.

However, the two instances σh and σ̄h would have all colors common, if they were
given the same advice string as σi . This implies that at most six instances of the form
σr can have the same advice string, and since the number of instances of the form σr

is 2
n
2 −1, there must be at least 2

n
2 −1

6 > 2
n
2 −4 different advice strings. �

Acknowledgements The authors would like to thank the anonymous referees for helpful suggestions.
The research was partially funded by the SNF grant 200021–141089.

References

1. Bean, D.R.: Effective coloration. J. Symb. Log. 41(2), 469–480 (1976)
2. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice complexity of the knap-

sack problem. In: Proc. of the 10th Latin American Symposium on Theoretical Informatics (LATIN
2012). LNCS, vol. 7256, pp. 61–72. Springer, Berlin (2012)

3. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity
of online problems. In: Proc. of the 20th International Symposium on Algorithms and Computation
(ISAAC 2009). LNCS, vol. 5878, pp. 331–340. Springer, Berlin (2009)

Algorithmica (2014) 70:92–111 111

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge (1998)

5. Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Proc.
of the 34th International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2008). LNCS, vol. 4910, pp. 247–258. Springer, Berlin (2008)

6. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2),
194–203 (1975)

7. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. In: Proc. of the
36th International Colloquium on Automata, Languages and Programming (ICALP 2009). LNCS,
vol. 5555, pp. 427–438. Springer, Berlin (2009)

8. Finch, S.R.: Mathematical Constants (Encyclopedia of Mathematics and Its Applications). Cambridge
University Press, New York (2003)

9. Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths. In: Proc. of
the 6th International Conference on Language and Automata Theory and Applications (LATA 2012).
LNCS, vol. 7183, pp. 228–239. Springer, Berlin (2012)

10. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. J. Graph Theory 12(2), 217–227 (1988)
11. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Proc. of

the 35th International Symposium on Mathematical Foundations of Computer Science (MFCS 2010).
LNCS, vol. 6281, pp. 24–36. Springer, Berlin (2010)

12. Kierstead, H.A.: Recursive and on-line graph coloring. In: Ershov, Y.L., Goncharov, S.S., Nerode, A.,
Remmel, J.B., Marek, V.W. (eds.) Handbook of Recursive Mathematics, Vol. 2: Recursive Algebra,
Analysis and Combinatorics. Studies in Logic and the Foundations of Mathematics, vol. 139, pp.
1233–1269. Elsevier, Amsterdam (1998)

13. Kierstead, H.A., Trotter, W.T.: On-line graph coloring. In: McGeoch, L.A., Sleator, D.D. (eds.) On-
Line Algorithms. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
7, pp. 85–92 (1992). AMS/DIMACS/ACM

14. Komm, D., Královič, R.: Advice complexity and barely random algorithms. RAIRO ITA 45(2), 249–
267 (2011)

15. Lovász, L., Saks, M.E., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance
ratio. Discrete Math. 75(1–3), 319–325 (1989)

16. Sloane, N.J.A.: Sequence A000073 in the on-line encyclopedia of integer sequences. Published elec-
tronically at http://oeis.org/A000073 (2012)

17. Vishwanathan, S.: Randomized online graph coloring. J. Algorithms 13(4), 657–669 (1992)

http://oeis.org/A000073

	Online Coloring of Bipartite Graphs with and without Advice
	Abstract
	Introduction
	Preliminaries
	Online Coloring Without Advice
	Proof of Lemma 1
	Base Cases (k<=3)
	Inductive Step (k>=4)
	Existence of the Graphs Gk-1<, Gk-2<, and Gk-3<
	Construction of Graph GA<(k)
	(A) |col(S1(Gk-1<))|>=k-2 and |col(S2(Gk-1<))|>=k-1
	(B) |col(S1(Gk-1<))|= k-3 and |col(S2(Gk-1<))|>=k-1
	(C) |col(S1(Gk-1<))|>=k-2 and |col(S2(Gk-1<))|=k-2
	(D) |col(S1(Gk-1<))|= k-3 and |col(S2(Gk-1<))|= k-2

	Advice Complexity
	Acknowledgements
	References

