Skip to main content

Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms

  • Conference paper
Computing and Combinatorics (COCOON 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7434))

Included in the following conference series:

Abstract

Gene tree reconciliation problems invoke the minimum number of evolutionary events that reconcile gene evolution within the context of a species tree. Here we focus on the deep coalescence (DC) problem, that is, given an unrooted gene tree and a rooted species tree, find a rooting of the gene tree that minimizes the number of DC events, or DC cost, when reconciling the gene tree with the species tree. We describe an O(n) time and space algorithm for the DC problem, where n is the size of the input trees, which improves on the time complexity of the best-known solution by a factor of n. Moreover, we provide an O(n) time and space algorithm that computes the DC scores for each rooting of the given gene tree. We also describe intriguing properties of the DC cost, which can be used to identify credible rootings in gene trees. Finally, we demonstrate the performance of our new algorithms in an empirical study using data from public databases.

This work was supported by MNiSW (#N N301 065236) to PG, by the National Science Foundation (#0830012 and #106029) to OE, and by NCN (#2011/01/B/ST6/02777) and the NIMBioS Working Group “Gene Tree Reconciliation” to PG and OE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M.S., Burleigh, J.G., Eulenstein, O.: Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models. BMC Bioinformatics 11(suppl. 1), S42 (2010)

    Article  Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bininda-Emonds, O.R.P., Gittleman, J.L., Steel, M.A.: The (super) tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33, 265–289 (2002)

    Article  Google Scholar 

  4. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: inferring the plant tree of life from 18,896 discordant gene trees. Systematic Biology 60, 117–125

    Google Scholar 

  5. Chaudhary, R., Bansal, M., Wehe, A., Fernández-Baca, D., Eulenstein, O.: iGTP: A software package for large-scale gene tree parsimony analysis. BMC Bioinformatics 11(1), 574 (2010)

    Article  Google Scholar 

  6. Chen, F., Mackey, A.J., Stoeckert, C.J., Roos, D.S.: Orthomcl-db: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research 34(suppl. 1), D363–D368

    Google Scholar 

  7. Davies, J.T., Fritz, S.A., Grenyer, R., Orme, C.D.L., Bielby, J., Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., Gittleman, J.L., Mace, G.M., Purvis, A.: Phylogenetic trees and the future of mammalian biodiversity. PNAS 105, 11556–11563 (2008)

    Article  Google Scholar 

  8. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797 (2004)

    Article  Google Scholar 

  9. Edwards, E.J., Still, C.J., Donoghue, M.J.: The relevance of phylogeny to studies of global change. Trends In Ecology & Evolution 22(5), 243–249 (2007)

    Article  Google Scholar 

  10. Forest, F., et al.: Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129), 757–760 (2007)

    Article  Google Scholar 

  11. Górecki, P., Tiuryn, J.: DLS-trees: A model of evolutionary scenarios. Theor. Comput. Sci. 359(1-3), 378–399 (2006)

    Article  MATH  Google Scholar 

  12. Górecki, P., Tiuryn, J.: Inferring phylogeny from whole genomes. Bioinformatics 23(2), e116–e122 (2007)

    Google Scholar 

  13. Guindon, S., Delsuc, F., Dufayard, J., Gascuel, O.: Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137 (2009)

    Article  Google Scholar 

  14. Koonin, E.V., Galperin, M.Y.: Sequence - evolution - function: computational approaches in comparative genomics. Kluwer Academic (2003)

    Google Scholar 

  15. Maddison, W.P.: Gene trees in species trees. Systematic Biology 46, 523–536 (1997)

    Article  Google Scholar 

  16. Page, R.D.M., Holmes, E.C.: Molecular evolution: a phylogenetic approach. Blackwell Science (1998)

    Google Scholar 

  17. Sayers, E.W., et al. Database resources of the national center for biotechnology information. Nucleic Acids Research 37(suppl. 1), D5–D15 (2009)

    Google Scholar 

  18. Smith, A.: Rooting molecular trees: problems and strategies. Biol. J. Linn. Soc. 51, 279–292

    Google Scholar 

  19. Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., Araujo, M.: Consequences of climate change on the tree of life in Europe. Nature 470(7335), 531–534 (2011)

    Article  Google Scholar 

  20. Wheeler, W.: Nucleic acid sequence phylogeny and random outgroups. Cladistics – The International Journal of the Willi Hennig Society 51, 363–368 (1990)

    Article  Google Scholar 

  21. Willis, C.G., Ruhfel, B., Primack, R.B., Miller-Rushing, A.J., Davis, C.C.: Phylogenetic patterns of species loss in thoreau’s woods are driven by climate change. PNAS 105, 17029–17033 (2008)

    Article  Google Scholar 

  22. Yu, Y., Warnow, T., Nakhleh, L.: Algorithms for MDC-Based Multi-locus Phylogeny Inference. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 531–545. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Zhang, L.: From Gene Trees to Species Trees II: Species Tree Inference by Minimizing Deep Coalescence Events. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 1685–1691 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Górecki, P., Eulenstein, O. (2012). Deep Coalescence Reconciliation with Unrooted Gene Trees: Linear Time Algorithms. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds) Computing and Combinatorics. COCOON 2012. Lecture Notes in Computer Science, vol 7434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32241-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32241-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32240-2

  • Online ISBN: 978-3-642-32241-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics