Abstract
Following recent trends in Data Warehousing, companies realized that there is a great potential in combining their information repositories to obtain a broader view of the economical market. Unfortunately, even though Data Warehouse (DW) integration has been defined from a theoretical point of view, until now no complete, widely used methodology has been proposed to support the integration of the information coming from heterogeneous DWs. This paper deals with the automatic integration of dimensional attributes from heterogeneous DWs. A method relying on topological properties that similar dimensions maintain is proposed for discovering mappings of dimensions, and a technique based on clustering algorithms is introduced for integrating the data associated to the dimensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, vol. 32. John Wiley & Sons, Inc., New York (2002)
Torlone, R.: Interoperability in Data Warehouses. In: Liu, L., Özsu, T. (eds.) Encyclopedia of Database Systems, pp. 1560–1564. Springer, Berlin (2009)
Banek, M., Vrdoljak, B., Tjoa, A.M., Skocir, Z.: Automated Integration of Heterogeneous Data Warehouse Schemas. IJDWM 4(4), 1–21 (2008)
Cabri, G., Guerra, F., Vincini, M., Bergamaschi, S., Leonardi, L., Zambonelli, F.: Momis: Exploiting Agents to Support Information Integration. Int. J. Cooperative Inf. Syst. 11(3), 293–314 (2002)
Bergamaschi, S., Gelati, G., Guerra, F., Vincini, M.: An Intelligent Data Integration Approach for Collaborative Project Management in Virtual Enterprises. World Wide Web 9(1), 35–61 (2005)
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) VLDB, pp. 49–58. Morgan Kaufmann (2001)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching. In: ICDE, pp. 117–128 (2002)
Cabibbo, L., Torlone, R.: On the Integration of Autonomous Data Marts. In: SSDBM, pp. 223–231. IEEE Computer Society (2004)
Bergamaschi, S., Sartori, C., Guerra, F., Orsini, M.: Extracting Relevant Attribute Values for Improved Search. IEEE Internet Computing 11(5), 26–35 (2007)
Bergamaschi, S., Bouquet, P., Giacomuzzi, D., Guerra, F., Po, L., Vincini, M.: An Incremental Method for the Lexical Annotation of Domain Ontologies. Int. J. Semantic Web Inf. Syst. 3(3), 57–80 (2007)
Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: The SEWASIE Network of Mediator Agents for Semantic Search. J. UCS 13(12), 1936–1969 (2007)
Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual Model for Data Warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)
Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: Towards OLAP query reformulation in Peer-to-Peer Data Warehousing. In: Song, I.Y., Ordonez, C. (eds.) DOLAP, pp. 37–44. ACM (2010)
Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP Query Reformulation in Peer-to-Peer Data Warehousing. Information Systems (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guerra, F., Olaru, MO., Vincini, M. (2012). Mapping and Integration of Dimensional Attributes Using Clustering Techniques. In: Huemer, C., Lops, P. (eds) E-Commerce and Web Technologies. EC-Web 2012. Lecture Notes in Business Information Processing, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32273-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-32273-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32272-3
Online ISBN: 978-3-642-32273-0
eBook Packages: Computer ScienceComputer Science (R0)