Skip to main content

A High-Performance Algorithm for Frequent Itemset Mining

  • Conference paper
Web-Age Information Management (WAIM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7418))

Included in the following conference series:

  • 1741 Accesses

Abstract

Frequent itemsets, also called frequent patterns, are important information about databases, and mining efficiently frequent itemsets is a core problem in data mining area. Pattern growth approaches, such as the classic FP-Growth algorithm and the efficient FPgrowth* algorithm, can solve the problem. The approaches mine frequent itemsets by constructing recursively conditional databases that are usually represented by prefix-trees. The three major costs of such approaches are prefix-tree traversal, support counting, and prefix-tree construction. This paper presents a novel pattern growth algorithm called BFP-growth in which the three costs are greatly reduced. We compare the costs among BFP-growth, FP-Growth, and FPgrowth*, and illuminate that the costs of BFP-growth are the least. Experimental data show that BFP-growth outperforms not only FP-Growth and FPgrowth* but also several famous algorithms including dEclat and LCM, ones of the fastest algorithms, for various databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(2), 1–42 (2006)

    Article  Google Scholar 

  2. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proc. ACM SIGMOD, pp. 394–405 (2002)

    Google Scholar 

  3. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for effective classification. In: Proc. ICDE, pp. 169–178 (2008)

    Google Scholar 

  4. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)

    Google Scholar 

  5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. VLDB, pp. 487–499 (1994)

    Google Scholar 

  6. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining association rules in large databases. In: Proc. VLDB, pp. 432–444 (1995)

    Google Scholar 

  7. Bastide, Y., Taouil, R., Pasquier, N., Gerd, S., Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD Explor. Newsl. 2(2), 66–75 (2000)

    Article  Google Scholar 

  8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach*. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  9. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)

    Article  MathSciNet  Google Scholar 

  10. Song, M., Rajasekaran, S.: A transaction mapping algorithm for frequent itemsets mining. IEEE Trans. Knowl. Data Eng. 18(4), 472–481 (2006)

    Article  Google Scholar 

  11. Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: Proc. ACM SIGKDD, pp. 326–335 (2003)

    Google Scholar 

  12. Tsay, Y.J., Hsu, T.J., Yu, J.R.: Fiut: A new method for mining frequent itemsets. Inf. Sci. 179(11), 1724–1737 (2009)

    Article  Google Scholar 

  13. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.K., Dubey, P.: Cache-conscious frequent pattern mining on modern and emerging processors. The VLDB Journal 16(1), 77–96 (2007)

    Article  Google Scholar 

  14. Schlegel, B., Gemulla, R., Lehner, W.: Memory-efficient frequent-itemset mining. In: Proc. EDBT, pp. 461–472 (2011)

    Google Scholar 

  15. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In: Proc. IEEE ICDM Workshop FIMI (2004)

    Google Scholar 

  16. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using fp-trees. IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

    Article  Google Scholar 

  17. Liu, G., Lu, H., Yu, J.X., Wang, W., Xiao, X.: Afopt: An efficient implementation of pattern growth approach. In: Proc. IEEE ICDM Workshop FIMI (2003)

    Google Scholar 

  18. Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Min. Knowl. Disc. 9(3), 249–274 (2004)

    Article  MathSciNet  Google Scholar 

  19. Schmidt-thieme, L.: Algorithmic features of eclat. In: Proc. IEEE ICDM Workshop FIMI (2004)

    Google Scholar 

  20. FP-Growth Implementation, http://adrem.ua.ac.be/~goethals/software/

  21. Frequent Itemset Mining Implementations Repository, http://fimi.ua.ac.be/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, JF., Liu, M. (2012). A High-Performance Algorithm for Frequent Itemset Mining. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds) Web-Age Information Management. WAIM 2012. Lecture Notes in Computer Science, vol 7418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32281-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32281-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32280-8

  • Online ISBN: 978-3-642-32281-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics