Skip to main content

Two Protocols for Delegation of Computation

  • Conference paper
Information Theoretic Security (ICITS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7412))

Included in the following conference series:

Abstract

Consider a weak client that wishes to delegate computation to an untrusted server and be able to succinctly verify the correctness of the result. We present protocols in two relaxed variants of this problem.

We first consider a model where the client delegates the computation to two or more servers, and is guaranteed to output the correct answer as long as even a single server is honest. In this model, we show a 1-round statistically sound protocol for any log-space uniform \(\mathcal{NC}\,\)circuit. In contrast, in the single server setting all known one-round succinct delegation protocols are computationally sound. The protocol extends the arithemetization techniques of [Goldwasser-Kalai-Rothblum, STOC 08] and [Feige-Kilian, STOC 97].

Next we consider a simplified view of the protocol of [Goldwasser-Kalai-Rothblum, STOC 08] in the single-server model with a non-succinct, but public, offline stage. Using this simplification we construct two computationally sound protocols for delegation of computation of any circuit C with depth d and input length n, even a non-uniform one, such that the client runs in time n·poly(log(|C|), d). The first protocol is potentially practical and easier to implement for general computations than the full protocol of [Goldwasser-Kalai-Rothblum, STOC 08], and the second is a 1-round protocol with similar complexity, but less efficient server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 326–349. ACM (2012)

    Google Scholar 

  3. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38, 1661–1694 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: how to remove intractability assumptions. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 113–131. ACM (1988)

    Google Scholar 

  5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)

    Google Scholar 

  6. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pp. 374–383. IEEE Computer Society (1997)

    Google Scholar 

  7. Canetti, R., Halevi, S., Steiner, M.: Hardness Amplification of Weakly Verifiable Puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

    Google Scholar 

  9. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

    Google Scholar 

  10. Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 90–112. ACM (2012)

    Google Scholar 

  12. Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation using multiple servers. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 445–454. ACM (2011)

    Google Scholar 

  13. Damgård, I., Faust, S., Hazay, C.: Secure Two-Party Computation with Low Communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Feige, U., Kilian, J.: Making games short (extended abstract). In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 506–516. ACM (1997)

    Google Scholar 

  15. Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Google Scholar 

  16. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 113–122. ACM (2008)

    Google Scholar 

  17. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive, Report 2011/456 (2011), http://eprint.iacr.org/

  18. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–732. ACM (1992)

    Google Scholar 

  19. Kalai, Y.T., Raz, R.: Probabilistically Checkable Arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Kol, G., Raz, R.: Competing provers protocols for circuit evaluation. Technical Report TR11-122, Electronic Colloquium on Computational Complexity (September 14, 2011), http://eccc.hpi-web.de/

  21. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39, 859–868 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30, 1253–1298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Rothblum, G.N.: Delegating computation reliably: paradigms and constructions. Ph.D. Thesis. Massachusetts Institute of Technology (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canetti, R., Riva, B., Rothblum, G.N. (2012). Two Protocols for Delegation of Computation. In: Smith, A. (eds) Information Theoretic Security. ICITS 2012. Lecture Notes in Computer Science, vol 7412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32284-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32284-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32283-9

  • Online ISBN: 978-3-642-32284-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics