Abstract
We show in this paper how a digital shape can be efficiently analyzed through the maximal segments defined along its digital contour. They are efficiently computable. They can be used to prove the multigrid convergence of several geometric estimators. Their asymptotic properties can be used to estimate the local amount of noise along the shape, through a multiscale analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Proc. 7th Symp. on Computational Geometry (SCG 1991), pp. 162–165. ACM Press (1991)
Bruckstein, A.M.: The self-similarity of digital straight lines. In: Proc. 10th Int. Conf. Pattern Recognition (ICPR 1990), Atlantic City, NJ, vol. 1, pp. 485–490 (1990)
Coeurjolly, D.: Algorithmique et géométrie pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lyon 2 (December 2002)
Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)
de Vieilleville, F.: Analyse des parties linaires des objets discrets et estimateurs de caractristiques gomtriques. PhD thesis, Université Bordeaux 1, Talence, France (April 2007)
de Vieilleville, F., Lachaud, J.-O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recognition 42(8), 1693–1707 (2009)
de Vieilleville, F., Lachaud, J.-O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. Journal of Mathematical Image and Vision 27(2), 471–502 (2007)
Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of discrete curves. Int. Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)
Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 145–160. Springer (2006)
Esbelin, H.-A., Malgouyres, R.: Convergence of Binomial-Based Derivative Estimation for C 2 Noisy Discretized Curves. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 57–66. Springer, Heidelberg (2009)
Feschet, F.: Canonical representations of discrete curves. Pattern Analysis & Applications 8(1), 84–94 (2005)
Feschet, F., Tougne, L.: Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)
Gross, A., Latecki, L.: Digitizations preserving topological and differential geometric properties. Comput. Vis. Image Underst. 62(3), 370–381 (1995)
Huxley, M.N.: Exponential sums and lattice points. Proc. London Math. Soc. 60, 471–502 (1990)
Kerautret, B., Lachaud, J.-O.: Multi-scale Analysis of Discrete Contours for Unsupervised Noise Detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009)
Kerautret, B., Lachaud, J.-O.: Meaningful scales online demonstration (2010), http://kerrecherche.iutsd.uhp-nancy.fr/MeaningfulBoxes
Kerautret, B., Lachaud, J.-O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Transaction on Pattern Analysis and Machine Intelligence (accepted, to appear, 2012)
Klette, R., Rosenfeld, A.: Digital straightness – a review. Discrete Applied Mathematics 139(1-3), 197–230 (2004)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco (2004)
Lachaud, J.-O.: Espaces non-euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à Diriger des Recherches, Université Bordeaux 1, Talence, France (2006)
Lachaud, J.-O., Provençal, X.: Two linear-time algorithms for computing the minimum length polygon of a digital contour. Discrete Applied Mathematics 159(18), 2229–2250 (2011)
Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007)
Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. Journal of Mathematical Imaging and Vision 8(2), 131–159 (1998)
Provençal, X., Lachaud, J.-O.: Two Linear-Time Algorithms for Computing the Minimum Length Polygon of a Digital Contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)
Reveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg, France (1991)
Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recognition 44(10-11), 2693–2700 (2011)
Sloboda, F., Zaťko, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Advances in Digital and Computational Geometry, pp. 113–160 (1998)
Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. In: Melter, R.A., Rosenfeld, A., Bhattacharya, P. (eds.) Vision Geometry: Proc. AMS Special Session, October 20-21, 1989, vol. 119, pp. 169–195. American Mathematical Society, Hoboken (1991)
Voss, K.: Discrete Images, Objects, and Functions in ℤn. Springer (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lachaud, JO. (2012). Digital Shape Analysis with Maximal Segments. In: Köthe, U., Montanvert, A., Soille, P. (eds) Applications of Discrete Geometry and Mathematical Morphology. WADGMM 2010. Lecture Notes in Computer Science, vol 7346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32313-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-32313-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32312-6
Online ISBN: 978-3-642-32313-3
eBook Packages: Computer ScienceComputer Science (R0)