Abstract
The ensemble methods combining resampling techniques: cross-validation, repeated holdout, and bootstrap sampling with clustering and random oracle using a genetic fuzzy rule-based system as a base learning algorithm were developed in Matlab environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. The computationally intensive experiments were conducted aimed to compare the accuracy of ensembles generated by the proposed methods with different number of clusters or random oracle subsets. The statistical analysis of results was made employing nonparametric Friedman and Wilcoxon statistical tests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
Bühlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)
Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)
Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man, and Cyb. -Part B 29(6), 703–715 (1999)
Dunn, J.C.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1), 95–104 (1974)
Graczyk, M., Lasota, T., Trawiński, B.: Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS(LNAI), vol. 5796, pp. 800–812. Springer, Heidelberg (2009)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kauffman (2006)
Hartigan, J.A., Wong, M.A.: A K-Means Clustering Algorithm. Applied Statistics 28(1), 100–108 (1979)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer (2009)
Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of Bagging Ensembles of Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS(LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)
Kuncheva, L.I., Rodríguez, J.J.: Classifier Ensembles with a Random Linear Oracle. IEEE Transactions on Knowledge and Data Engineering 19(4), 500–508 (2007)
Kuncheva, L.I.: Switching between Selection and Fusion in Combining Classifiers: An Experiment. IEEE Trans. Systems, Man, and Cybernetics, Part B 32(2), 146–156 (2002)
Lasota, T., Mazurkiewicz, J., Trawiński, B., Trawiński, K.: Comparison of Data Driven Models for the Validation of Residential Premises using KEEL. International Journal of Hybrid Intelligent Systems 7(1), 3–16 (2010)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)
Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)
Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Neural Networks for a Regression Problem. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS(LNAI), vol. 6679, pp. 213–220. Springer, Heidelberg (2011)
Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)
Molinaro, A.N., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)
Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognition 37(3), 487–501 (2004)
Pardo, C., Rodríguez, J.J., Díez-Pastor, J.F., García-Osorio, C.: Random Oracles for Regression Ensembles. In: Okun, O., Valentini, G., Re, M., et al. (eds.) Ensembles in Machine Learning Applications. SCI, vol. 373, pp. 181–199. Springer, Heidelberg (2011)
Woods, K., Kegelmeyer, W.P., Bowyer, K.: Combination of Multiple Classifiers Using Local Accuracy Estimates. IEEE Trans. Pattern Analysis and Machine Intelligence 19(4), 405–410 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lasota, T., Telec, Z., Trawiński, B., Trawiński, G. (2013). Experimental Evaluation of Resampling Combined with Clustering and Random Oracle Using Genetic Fuzzy Systems. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) Multimedia and Internet Systems: Theory and Practice. Advances in Intelligent Systems and Computing, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32335-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-32335-5_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32334-8
Online ISBN: 978-3-642-32335-5
eBook Packages: EngineeringEngineering (R0)