Skip to main content

Experimental Evaluation of Resampling Combined with Clustering and Random Oracle Using Genetic Fuzzy Systems

  • Conference paper
Multimedia and Internet Systems: Theory and Practice

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 183))

  • 664 Accesses

Abstract

The ensemble methods combining resampling techniques: cross-validation, repeated holdout, and bootstrap sampling with clustering and random oracle using a genetic fuzzy rule-based system as a base learning algorithm were developed in Matlab environment. The methods were applied to the real-world regression problem of predicting the prices of residential premises based on historical data of sales/purchase transactions. The computationally intensive experiments were conducted aimed to compare the accuracy of ensembles generated by the proposed methods with different number of clusters or random oracle subsets. The statistical analysis of results was made employing nonparametric Friedman and Wilcoxon statistical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Bühlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man, and Cyb. -Part B 29(6), 703–715 (1999)

    Article  Google Scholar 

  5. Dunn, J.C.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  6. Graczyk, M., Lasota, T., Trawiński, B.: Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS(LNAI), vol. 5796, pp. 800–812. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kauffman (2006)

    Google Scholar 

  8. Hartigan, J.A., Wong, M.A.: A K-Means Clustering Algorithm. Applied Statistics 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer (2009)

    Google Scholar 

  10. Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of Bagging Ensembles of Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS(LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    MATH  Google Scholar 

  12. Kuncheva, L.I., Rodríguez, J.J.: Classifier Ensembles with a Random Linear Oracle. IEEE Transactions on Knowledge and Data Engineering 19(4), 500–508 (2007)

    Article  Google Scholar 

  13. Kuncheva, L.I.: Switching between Selection and Fusion in Combining Classifiers: An Experiment. IEEE Trans. Systems, Man, and Cybernetics, Part B 32(2), 146–156 (2002)

    Article  Google Scholar 

  14. Lasota, T., Mazurkiewicz, J., Trawiński, B., Trawiński, K.: Comparison of Data Driven Models for the Validation of Residential Premises using KEEL. International Journal of Hybrid Intelligent Systems 7(1), 3–16 (2010)

    MATH  Google Scholar 

  15. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)

    Google Scholar 

  16. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Neural Networks for a Regression Problem. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS(LNAI), vol. 6679, pp. 213–220. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)

    Article  Google Scholar 

  19. Molinaro, A.N., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Article  Google Scholar 

  20. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognition 37(3), 487–501 (2004)

    Article  MATH  Google Scholar 

  21. Pardo, C., Rodríguez, J.J., Díez-Pastor, J.F., García-Osorio, C.: Random Oracles for Regression Ensembles. In: Okun, O., Valentini, G., Re, M., et al. (eds.) Ensembles in Machine Learning Applications. SCI, vol. 373, pp. 181–199. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Woods, K., Kegelmeyer, W.P., Bowyer, K.: Combination of Multiple Classifiers Using Local Accuracy Estimates. IEEE Trans. Pattern Analysis and Machine Intelligence 19(4), 405–410 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Lasota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lasota, T., Telec, Z., Trawiński, B., Trawiński, G. (2013). Experimental Evaluation of Resampling Combined with Clustering and Random Oracle Using Genetic Fuzzy Systems. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) Multimedia and Internet Systems: Theory and Practice. Advances in Intelligent Systems and Computing, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32335-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32335-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32334-8

  • Online ISBN: 978-3-642-32335-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics