Abstract
The chapter addresses the problem of parameter evaluation for the Ant Colony Optimization (ACO) technique. The operation of the ACO is too complex to allow for an analytical approach to the problem of optimizing parameter setting. Therefore their values are usually chosen in an experimental way. The chapter presents an in depth analysis of the impact of the individual parameters on overall ACO performance and studies their interplay. The analyzed version of the ACO is used for solving the Travelling Salesmen Problem (TSP). Both static and dynamic versions of the problem are considered. In the dynamic environment 4 modes of route variability are studied. The chapter ends with a statistical analysis of data gathered in a sequence of experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dorigo, M.: Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di Milano, Italie (1992)
Dorigo, M., Stuetzle, T.: Ant Colony Optimization: Overview and Recent Advances, IRIDIA–Technical Report Series, Technical Report No. TR/IRIDIA/2009-013 (2009)
Chirico, U.: A Java Framework for Ant Colony Systems. In: Ants 2004: Forth International Workshop on Ant Colony Optimization and Swarm Intelligence, Brussels (2004)
Siemiński, A.: TSP/ACO Parameter Optimization; Information Systems Architecture and Technology; System Analysis Approach to the Design, Control and Decision Support, pp. 151–161. Oficyna Wydawnicza Politechniki Wrocławskiej (2011)
Psarafits, H.N.: Dynamic vehicle routing: Status and Prospects. National Technical Annals of Operations Research. University of Athens, Greece (1995)
Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algorithms applied to dynamic TSP. In: EvoWorkshops 2001: Appl. of Evol. Comput., pp. 213–222 (2001)
Guntsch, M., Middendorf, M.: A Population Based Approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)
Mavrovouniotis, M., Yang, S.: Ant Colony Optimization with Immigrants Schemes in Dynamic Environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siemiński, A. (2013). Ant Colony Optimization Parameter Evaluation. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) Multimedia and Internet Systems: Theory and Practice. Advances in Intelligent Systems and Computing, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32335-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-32335-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32334-8
Online ISBN: 978-3-642-32335-5
eBook Packages: EngineeringEngineering (R0)