Summary
In the paper the modified Feature Similarity metric has been discussed which is based on the nonlinear combination of two elements being the basics of the recently developed Feature Similarity metric for full-reference image quality assessment. Nevertheless, the influence of the gradient magnitude and phase congruency, used as two main elements of the metric, on the perceived quality is not necessarily equal. For this reason some experiments have been conducted in order to propose the weighting coefficients, applied as the local exponents, increasing the rank order correlation coefficients with subjective quality evaluations. The verification of the obtained results has been conducted using 5 ”state-of-the-art” benchmark databases and the obtained weighted FSIM metric’s performance results are better for all of them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Okarma, K.: Colour Image Quality Assessment Using Structural Similarity Index and Singular Value Decomposition. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds.) ICCVG 2008. LNCS, vol. 5337, pp. 55–65. Springer, Heidelberg (2009)
Okarma, K.: Colour Image Quality Assessment Using the Combined Full-Reference Metric. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A., et al. (eds.) Computer Recognition Systems 4. AISC, vol. 95, pp. 287–296. Springer, Heidelberg (2011)
Forczmański, P., Okarma, K.: Application of the central weighted Structural Similarity index for the estimation of the face recognition accuracy. Annales UMCS - Informatica 9(1), 153–163 (2009)
Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Proc. Letters 9(3), 81–84 (2002)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error measurement to Structural Similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)
Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for image quality assessment. In: Proc. 37th IEEE Asilomar Conf. on Signals, Systems and Computers (2003)
Chen, G.H., Yang, C.L., Xie, S.L.: Gradient-based structural similarity for image quality assessment. In: Proc. Int. Conf. Image Processing, pp. 2929–2932 (2006)
Sampat, M., Wang, Z., Gupta, S., Bovik, A., Markey, M.: Complex Wavelet Structural Similarity: A new image similarity index. IEEE Trans. Image Proc. 18(11), 2385–2401 (2009)
Li, C., Bovik, A.: Three-component weighted structural similarity index. In: Proceedings of SPIE - Image Quality and System Performance VI, 72420Q (2009)
Zhang, L., Zhang, L., Mou, X.: RFSIM: A feature based image quality assessment metric using Riesz transforms. In: Proc. Int. Conf. Image Processing, pp. 321–324 (2010)
Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A Feature Similarity index for image quality assessment. IEEE Trans. Image Proc. 20(8), 2378–2386 (2011)
Shnayderman, A., Gusev, A., Eskicioglu, A.: An SVD-based gray-scale image quality measure for local and global assessment. IEEE Trans. Image Proc. 15(2), 422–429 (2006)
Mahmoudi-Aznaveh, A., Mansouri, A., Torkamani-Azar, F., Eslami, M.: Image quality measurement besides distortion type classifying. Optical Review 16(1), 30–34 (2009)
Mansouri, A., Mahmoudi-Aznaveh, A., Torkamani-Azar, F., Jahanshahi, J.: Image quality assessment using the Singular Value Decomposition theorem. Optical Review 16(2), 49–53 (2009)
Wang, R., Cui, Y., Yuan, Y.: Image quality assessment using full-parameter Singular Value Decomposition. Optical Engineering 50(5), 057005 (2011)
Zhang, F., Li, J., Chen, G., Man, J.: Assessment of color video quality with Singular Value Decomposition of complex matrix. In: Proc. Int. Conf. Information Assurance and Security, pp. 103–106 (2009)
Narwaria, M., Lin, W.: Objective image quality assessment with Singular Value Decomposition. In: Proc. 5th Int. Workshop Video Processing and Quality Metrics for Consumer Electronics (2010)
Narwaria, M., Lin, W.: SVD-based quality metric for image and video using machine learning. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 347–364 (2012)
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008 - a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics 10, 30–45 (2009)
Larson, E., Chandler, D.: Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging 19(1), 011006 (2010)
Sheikh, H., Wang, Z., Cormack, L., Bovik, A.: LIVE image quality assessment database release 2 (2005), http://live.ece.utexas.edu/research/quality
Engelke, U., Zepernick, H., Kusuma, T.: Subjective quality assessment for wireless image communication: The Wireless Imaging Quality database. In: Proc. 5th Int. Workshop Video Processing and Quality Metrics for Consumer Electronics (2010)
Le Callet, P., Autrusseau, F.: Subjective quality assessment IRCCyN/IVC database (2005), http://www.irccyn.ec-nantes.fr/ivcdb/
Okarma, K.: Combined Full-Reference Image Quality Metric Linearly Correlated with Subjective Assessment. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 539–546. Springer, Heidelberg (2010)
Tourancheau, S., Autrusseau, F., Sazzad, Z., Horita, Y.: Impact of subjective dataset on the performance of image quality metrics. In: Proc. Int. Conf. Image Processing, pp. 365–368 (2008)
Liu, Z., Laganiére, R.: Phase congruence measurement for image similarity assessment. Pattern Recognition Letters 28(1), 166–172 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Okarma, K. (2013). Weighted Feature Similarity – A Nonlinear Combination of Gradient and Phase Congruency for Full-Reference Image Quality Assessment. In: Choraś, R. (eds) Image Processing and Communications Challenges 4. Advances in Intelligent Systems and Computing, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32384-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-32384-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32383-6
Online ISBN: 978-3-642-32384-3
eBook Packages: EngineeringEngineering (R0)