Abstract
We give a new family of Lovász Local Lemmas (LLL), with applications. Shearer has given the most general condition under which the LLL holds, but the original condition of Lovász is simpler and more practical. Do we have to make a choice between practical and optimal? In this article we present a continuum of LLLs between the original and Shearer’s conditions. One of these, which we call Clique LLL (CLLL), particularly stands out, and is natural in those settings, where the event space is defined with discrete independent random variables (á la Moser and Tardos ). Using this version we get improved bounds in applications for Acyclic Edge Coloring and Non-repetitive Vertex Coloring.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Grytczuk, J.: Breaking the rhythm on graphs. Discrete Mathematics 308(8), 1375–1380 (2008)
Alon, N., Grytczuk, J., Haluszczak, M., Riordan, O.: Nonrepetitive colorings of graphs. Random Struct. Algorithms 21(3-4), 336–346 (2002)
Alon, N.: A parallel algorithmic version of the Local Lemma. In: FOCS, pp. 586–593 (1991)
Alon, N., McDiarmid, C., Reed, B.A.: Acyclic coloring of graphs. Random Struct. Algorithms 2(3), 277–288 (1991)
Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. Journal of Graph Theory 37(3), 157–167 (2001)
Beck, J.: An algorithmic approach to the Lovász Local Lemma. i. Random Struct. Algorithms 2(4), 343–366 (1991)
Bissacot, R., Fernndez, R., Procacci, A., Scoppola, B.: An improvement of the Lovász Local Lemma via cluster expansion. Combinatorics, Probability and Computing, FirstView, 1–11 (2011)
Bresar, B., Grytczuk, J., Klavzar, S., Niwczyk, S., Peterin, I.: Nonrepetitive colorings of trees. Discrete Mathematics 307(2), 163–172 (2007)
Czumaj, A., Scheideler, C.: Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász Local Lemma. In: SODA, pp. 30–39 (2000)
Currie, J.D.: Pattern avoidance: themes and variations. Theor. Comput. Sci. 339, 7–18 (2005)
Dujmovic, V., Joret, G., Kozik, J., Wood, D.R.: Nonrepetitive colouring via entropy compression. CoRR, abs/1112.5524 (2012)
Erdös, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Hajnal, A., Rado, R., Sos, V.T. (eds.) Infinite and Finite Sets (to Paul Erdos on his 60th birthday), pp. 609–627 (1975)
Erdös, P., Spencer, J.: Lopsided Lovász Local Lemma and latin transversals. Discrete Applied Mathematics 30(2-3), 151–154 (1991)
Grünbaum, B.: Acyclic colorings of planar graphs. Israel Journal of Mathematics 14, 390–408 (1973)
Grytczuk, J.: Nonrepetitive colorings of graphs: A survey. Int. J. Math. Mathematical Sciences 2007 (2007)
Grytczuk, J.: Thue type problems for graphs, points, and numbers. Discrete Mathematics 308(19), 4419–4429 (2008)
Guttmann, A.J.: Comment: Comment on ’the exact location of partition function zeros, a new method for statistical mechanics’. Journal of Physics A Mathematical General 20, 511–512 (1987)
Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the Lovasz Local Lemma. In: FOCS, pp. 397–406 (2010)
Kolipaka, K.B.R., Szegedy, M.: Moser and Tardos meet Lovász. In: STOC, pp. 235–244 (2011)
Muthu, R., Narayanan, N., Subramanian, C.R.: Improved bounds on acyclic edge colouring. Discrete Mathematics 307(23), 3063–3069 (2007)
Moser, R.A.: A constructive proof of the Lovász Local Lemma. In: STOC, pp. 343–350 (2009)
Molloy, M., Reed, B.A.: Further algorithmic aspects of the Local Lemma. In: STOC, pp. 524–529 (1998)
Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local Lemma. J. ACM 57(2) (2010)
Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs (2010)
Pegden, W.: An improvement of the Moser-Tardos algorithmic local lemma. CoRR, abs/1102.2853 (2011)
Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)
Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Mathematics 20, 69–76 (1977)
Srinivasan, A.: Improved algorithmic versions of the Lovász Local Lemma. In: SODA, pp. 611–620 (2008)
Scott, A.D., Sokal, A.D.: On dependency graphs and the lattice gas. Combinatorics, Probability & Computing 15(1-2), 253–279 (2006)
Thue, A.: Über unendliche Zeichenreihen. Norske Vid Selsk. Skr. I. Mat. Nat. Kl. Christian 7, 1–22 (1906)
Todo, S.: Transfer-matrix study of negative-fugacity singularity of hard-core lattice gas. International Journal of Modern Physics C 10, 517–529 (1999)
Wood, D.W.: The exact location of partition function zeros, a new method for statistical mechanics. Journal of Physics A: Mathematical and General 18(15), L917 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kolipaka, K., Szegedy, M., Xu, Y. (2012). A Sharper Local Lemma with Improved Applications. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-32512-0_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32511-3
Online ISBN: 978-3-642-32512-0
eBook Packages: Computer ScienceComputer Science (R0)