Skip to main content

Abstract

We give a new family of Lovász Local Lemmas (LLL), with applications. Shearer has given the most general condition under which the LLL holds, but the original condition of Lovász is simpler and more practical. Do we have to make a choice between practical and optimal? In this article we present a continuum of LLLs between the original and Shearer’s conditions. One of these, which we call Clique LLL (CLLL), particularly stands out, and is natural in those settings, where the event space is defined with discrete independent random variables (á la Moser and Tardos ). Using this version we get improved bounds in applications for Acyclic Edge Coloring and Non-repetitive Vertex Coloring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Grytczuk, J.: Breaking the rhythm on graphs. Discrete Mathematics 308(8), 1375–1380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Grytczuk, J., Haluszczak, M., Riordan, O.: Nonrepetitive colorings of graphs. Random Struct. Algorithms 21(3-4), 336–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: A parallel algorithmic version of the Local Lemma. In: FOCS, pp. 586–593 (1991)

    Google Scholar 

  4. Alon, N., McDiarmid, C., Reed, B.A.: Acyclic coloring of graphs. Random Struct. Algorithms 2(3), 277–288 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. Journal of Graph Theory 37(3), 157–167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J.: An algorithmic approach to the Lovász Local Lemma. i. Random Struct. Algorithms 2(4), 343–366 (1991)

    Article  MATH  Google Scholar 

  7. Bissacot, R., Fernndez, R., Procacci, A., Scoppola, B.: An improvement of the Lovász Local Lemma via cluster expansion. Combinatorics, Probability and Computing, FirstView, 1–11 (2011)

    Google Scholar 

  8. Bresar, B., Grytczuk, J., Klavzar, S., Niwczyk, S., Peterin, I.: Nonrepetitive colorings of trees. Discrete Mathematics 307(2), 163–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Czumaj, A., Scheideler, C.: Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász Local Lemma. In: SODA, pp. 30–39 (2000)

    Google Scholar 

  10. Currie, J.D.: Pattern avoidance: themes and variations. Theor. Comput. Sci. 339, 7–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dujmovic, V., Joret, G., Kozik, J., Wood, D.R.: Nonrepetitive colouring via entropy compression. CoRR, abs/1112.5524 (2012)

    Google Scholar 

  12. Erdös, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Hajnal, A., Rado, R., Sos, V.T. (eds.) Infinite and Finite Sets (to Paul Erdos on his 60th birthday), pp. 609–627 (1975)

    Google Scholar 

  13. Erdös, P., Spencer, J.: Lopsided Lovász Local Lemma and latin transversals. Discrete Applied Mathematics 30(2-3), 151–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grünbaum, B.: Acyclic colorings of planar graphs. Israel Journal of Mathematics 14, 390–408 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grytczuk, J.: Nonrepetitive colorings of graphs: A survey. Int. J. Math. Mathematical Sciences 2007 (2007)

    Google Scholar 

  16. Grytczuk, J.: Thue type problems for graphs, points, and numbers. Discrete Mathematics 308(19), 4419–4429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guttmann, A.J.: Comment: Comment on ’the exact location of partition function zeros, a new method for statistical mechanics’. Journal of Physics A Mathematical General 20, 511–512 (1987)

    Article  MathSciNet  Google Scholar 

  18. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the Lovasz Local Lemma. In: FOCS, pp. 397–406 (2010)

    Google Scholar 

  19. Kolipaka, K.B.R., Szegedy, M.: Moser and Tardos meet Lovász. In: STOC, pp. 235–244 (2011)

    Google Scholar 

  20. Muthu, R., Narayanan, N., Subramanian, C.R.: Improved bounds on acyclic edge colouring. Discrete Mathematics 307(23), 3063–3069 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moser, R.A.: A constructive proof of the Lovász Local Lemma. In: STOC, pp. 343–350 (2009)

    Google Scholar 

  22. Molloy, M., Reed, B.A.: Further algorithmic aspects of the Local Lemma. In: STOC, pp. 524–529 (1998)

    Google Scholar 

  23. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local Lemma. J. ACM 57(2) (2010)

    Google Scholar 

  24. Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs (2010)

    Google Scholar 

  25. Pegden, W.: An improvement of the Moser-Tardos algorithmic local lemma. CoRR, abs/1102.2853 (2011)

    Google Scholar 

  26. Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Mathematics 20, 69–76 (1977)

    Article  MathSciNet  Google Scholar 

  28. Srinivasan, A.: Improved algorithmic versions of the Lovász Local Lemma. In: SODA, pp. 611–620 (2008)

    Google Scholar 

  29. Scott, A.D., Sokal, A.D.: On dependency graphs and the lattice gas. Combinatorics, Probability & Computing 15(1-2), 253–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thue, A.: Über unendliche Zeichenreihen. Norske Vid Selsk. Skr. I. Mat. Nat. Kl. Christian 7, 1–22 (1906)

    Google Scholar 

  31. Todo, S.: Transfer-matrix study of negative-fugacity singularity of hard-core lattice gas. International Journal of Modern Physics C 10, 517–529 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wood, D.W.: The exact location of partition function zeros, a new method for statistical mechanics. Journal of Physics A: Mathematical and General 18(15), L917 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolipaka, K., Szegedy, M., Xu, Y. (2012). A Sharper Local Lemma with Improved Applications. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics