Abstract
Detection of communities in the complex networks is an actual problem solved in research area. The paper describes a new algorithm for this purpose. Left-Right-Oscillate algorithm (LRO) is based on spectral ordering of graph vertices. This approach allows us to detect a desired community – either by the size of the smallest communities or by the level of modularity. Since the LRO algorithm detects efficiently communities in large network even when these are not sharply partitioned, it turns to be specially suitable for the analysis of social, complex or coauthor networks. In this paper, proposed algorithm is used for finding communities in a large coauthor network - DBLP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks (2009)
Bruns, A.: How long is a tweet? mapping dynamic conversation networks on twitter using gawk and gephi. Information Communication Society, 1–29 (December 2011)
Cheng, D., Kannan, R., Vempala, S., Wang, G.: On a recursive spectral algorithm for clustering from pairwise similarities. Technical report, MIT (2003)
Chung, F.R.K.: Spectral Graph Theory, vol. 92. American Mathematical Society (1997)
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 1–6 (2004)
Dasgupta, A., Hopcroft, J., Kannan, R., Mitra, P.: Spectral Clustering by Recursive Partitioning. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 256–267. Springer, Heidelberg (2006)
Ding, C., He, X.: Linearized cluster assignment via spectral ordering. In: Twenty First International Conference on Machine Learning, ICML 2004, vol. 21, p. 30 (2004)
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW, vol. 57. Oxford University Press (2003)
Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35(3), 66–70 (2002)
Freeman, L.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979)
Garton, L., Haythornthwaite, C., Wellman, B.: Studying online social networks. Journal of Computer-Mediated Communication 3(1) (1997)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)
Granovetter, M.S.: The Strength of Weak Ties 78(6), 1360–1380 (1973)
Komzsik, L.: Lanczos Method: Evolution and Application. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Leetaru, K.H.: Culturomics 2.0: Forecasting large-scale human behavior using global news media tone in time and space. First Monday 16(9), 2 (2011)
Montanari, A.: Community detection via spectral methods. Signal Processing (1) (2011)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 58 (2003)
Newman, M.E.J.: Detecting community structure in networks. The European Physical Journal B Condensed Matter 38(2), 321–330 (2004)
Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 74(3 pt. 2), 36104 (2006)
Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103(23), 8577–8582 (2006)
Newman, M.E.J., Barabasi, A.-L., Watts, D.J.: The structure and dynamics of networks, vol. 107. Princeton University Press (2006)
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 69(2 pt. 2), 16 (2004)
Obadi, G., Drázdilová, P., Martinovic, J., Slaninová, K., Snásel, V.: Using spectral clustering for finding students’ patterns of behavior in social networks. In: DATESO, pp. 118–130 (2010)
Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
Schaeffer, S.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
Slaninová, K., Martinovič, J., Novosád, T., Dráždilová, P., Vojáček, L., Snášel, V.: Web site community analysis based on suffix tree and clustering algorithm. In: Proceedings - 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2011, pp. 110–113 (2011)
Tyler, J., Wilkinson, D., Huberman, B.: E-mail as spectroscopy: Automated discovery of community structure within organizations. The Information Society 21(2), 143–153 (2005)
White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the Fifth SIAM International Conference on Data Mining, vol. 119, p. 274 (2005)
Zarei, M., Samani, K.A.: Eigenvectors of network complement reveal community structure more accurately. Physica A: Statistical Mechanics and its Applications 388(8), 1721–1730 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dráždilová, P., Martinovič, J., Slaninová, K. (2013). Spectral Clustering: Left-Right-Oscillate Algorithm for Detecting Communities. In: Pechenizkiy, M., Wojciechowski, M. (eds) New Trends in Databases and Information Systems. Advances in Intelligent Systems and Computing, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32518-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-32518-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32517-5
Online ISBN: 978-3-642-32518-2
eBook Packages: EngineeringEngineering (R0)