Skip to main content

Towards Characterizing Distributed Complex Situation Assessment as Workflows in Loosely Coupled Systems

  • Conference paper
Intelligent Distributed Computing VI

Part of the book series: Studies in Computational Intelligence ((SCI,volume 446))

Abstract

This paper introduces challenges in contemporary situation assessment using collaborative inference and discusses solutions that are based on workflows between distributed processing nodes. The paper exposes the necessary conditions that workflows have to satisfy in order to support accurate situation assessment and provides a systematic approach to verification of the workflows. In particular, we emphasize the link between the complexity of the domain and the complexity of the workflows in terms of data and control coupling. With the help of graphical representations, we characterize the complexity of the domains and identify critical relations that have to be captured by collaborating processes in a workflow supporting correct situation assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatt, E., Fujimoto, R., Ogielski, A., Perumalla, K.: Parallel simulation techniques for large scale networks. IEEE Communications Magazine 36, 42–47 (2002)

    Article  Google Scholar 

  2. Chandrasekaran, B.: Functional representation and causal processes. Advances in Computers 38, 73–143 (1994)

    Article  Google Scholar 

  3. Deelman, E., Szymanski, B.K., Caraco, T.: Simulating lyme disease using parallel discrete event simulation. In: Proceedings of the Winter Simulation Conference, pp. 1191–1198 (1996)

    Google Scholar 

  4. Forbus, K.D.: Qualitative physics: Past, present, and future. In: Exploring Artificial Intelligence, ch. 7, pp. 239–296. Morgan-Kaufmann Publishers, Inc., San Francisco (1988)

    Google Scholar 

  5. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer (2007)

    Google Scholar 

  6. Karimabadi, H., Driscoll, J., Dave, J., Omelchenko, Y., Perumalla, K., Fujimoto, R., Omidi, N.: Parallel Discrete Event Simulations of Grid-Based Models: Asynchronous Electromagnetic Hybrid Code. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 573–582. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control flow in workflows. Acta Informatica 39(3), 143–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kreps, G.A., Bosworth, S.L.: Organizational adaptation to disaster. In: Handbook of Disaster Research, ch. 17, pp. 297–315. Springer (2007)

    Google Scholar 

  9. Kuipers, B.: Qualitative simulation. Artificial Intelligence 29, 289–338 (2001)

    Article  MathSciNet  Google Scholar 

  10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems, pp. 415–448 (1990)

    Google Scholar 

  11. Lukovszki, C., Szabó, R., Henk, T.: Performance evaluation of a hybrid atm switch architecture by parallel discrete event simulation. Informatica (Slovenia) 24(2) (2000)

    Google Scholar 

  12. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

    Google Scholar 

  13. Pearl, J.: Causality: Models Reasoning and Inference. Cambridge University Press (2000)

    Google Scholar 

  14. Penders, A., Pavlin, G., Kamermans, M.: A collaborative approach to construction of large scale distributed reasoning systems. International Journal on Artificial Intelligence Tools 20(6), 1083–1106 (2011)

    Article  Google Scholar 

  15. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press (2000)

    Google Scholar 

  16. van der Aalst, W.: Workflow Management: Models, Methods, and Systems. MIT Press (2002)

    Google Scholar 

  17. Wieland, F.: Parallel simulation for aviation applications. In: Winter Simulation Conference, pp. 1191–1198 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costin Bădică .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bădică, C., Conrado, C., Mignet, F., de Oude, P., Pavlin, G. (2013). Towards Characterizing Distributed Complex Situation Assessment as Workflows in Loosely Coupled Systems. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds) Intelligent Distributed Computing VI. Studies in Computational Intelligence, vol 446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32524-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32524-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32523-6

  • Online ISBN: 978-3-642-32524-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics