Skip to main content

A Force-Distance Model of Humanoid Arm Withdrawal Reflexes

  • Conference paper
Advances in Autonomous Robotics (TAROS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7429))

Included in the following conference series:

Abstract

This paper presents the force-distance model of humanoid robot arm withdrawal reflexes. The model was developed in order to provide humanoid robots with a generic withdrawal reflex that could complement other robot safety mechanisms based on collision avoidance, reduced momentum, and compliance. The model goes beyond existing work on withdrawal behaviours by studying reflexes for arbitrary poses on a humanoid robots. It is inspired by a human withdrawal reflex trigger mechanism, the reflex receptive field and the withdrawal motions in the model are based on human reflex motion data. The model is implemented on a Nao humanoid robot with its upper and lower arms covered in a custom made tactile skin sensor. The efficiency of the resulting reflexes is analysed in terms of the distance the stimulation point on the robot is moved away from the spacial point of impact and in terms of whether the robot collides with itself during the expression of the reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haddadin, S., Albu-Schafer, A., Hirzinger, G.: Requirements a for safe robots: Measurements, analysis and new insights. International Journal of Robotics Research 28(11-12), 1507–1527 (2009)

    Article  Google Scholar 

  2. Duchaine, V., Lauzier, N., Baril, M., Lacasse, M.A., Gosselin, C.: A flexible robot skin for safe physical human robot interaction. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan, May 12-17, pp. 3676–2681 (2009)

    Google Scholar 

  3. Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G.: Methods and technologies for the implementation of large scale robot tactile sensors. IEEE Transactions on Robotics, Special Issue on Robot Sense of Touch 27(3), 389–400 (2011)

    Google Scholar 

  4. Schouenborg, J., Weng, H.R., Holmberg, H.: Modular organization of spinal nociceptive reflexes: A new hypothesis. News in Physiological Sciences 9, 261–265 (1994)

    Google Scholar 

  5. Dahl, T.S., Swere, E.A.R., Palmer, A.: Touch-triggered withdrawal reflexes for safer robots. In: Dautenhahn, K., Saunders, J. (eds.) New Frontiers in Human-Robot Interaction, pp. 281–304. John Benjamins Publishing Company (2011)

    Google Scholar 

  6. Kunz, T., Reiser, U., Stilman, M., Verl, A.: Real-time path planning for a robot arm in changing environments. In: IEEE/RSJ International Conference on Intelligent Robots and System (IROS 2010), Taipei, Taiwan, October 18-22, pp. 5906–5911 (2010)

    Google Scholar 

  7. Elkmann, N., Fritzsche, M., Schulenburg, E.: Tactile sensing for safe physical human-robot interaction. In: Proceedings of the Fourth International Conference on Advances in Human-Computer Interaction (ACHI 2011), Guadeloupe, France, February 23-28, pp. 212–217 (2011)

    Google Scholar 

  8. Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems 18(1-2), 59–64 (2005)

    Article  Google Scholar 

  9. Tondu, B., Ippolito, S., Guiochet, J., Daidie, A.: A seven-degrees-offreedom robot-arm driven by pneumatic artificial muscles for humanoid robots. International Journal of Robotics Research 24(4), 257–274 (2005)

    Article  Google Scholar 

  10. Meyer, F., Sprowitz, A., Berthouze, L.: Passive compliance for a rc servo-controlled bouncing robot. Advanced Robotics 20(8), 953–961 (2006)

    Article  Google Scholar 

  11. kook Yun, S.: Compliant manipulation for peg-in-hole: Is passive compliance a key to learn contact motion? In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008), Pasadena, California, May 19-23, pp. 1647–1652 (2008)

    Google Scholar 

  12. Walters, M.L., Syrdal, D.S., Dautenhahn, K., Boekhorst, R., Koay, K.L.: Avoiding the uncanny valley: Robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion. Autonomous Robots, Special Issue on Socially Assistive Robotics 24(2), 159–178 (2008)

    Google Scholar 

  13. Bekey, G.A., Tomovic, R.: Robot control by reflex actions. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1986), vol. 3, pp. 240–247 (1986)

    Google Scholar 

  14. Brooks, R.A., Breazeal, C., Marjanovic, M., Scassellati, B., Williamson, M.M.: The Cog Project: Building a Humanoid Robot. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS (LNAI), vol. 1562, pp. 52–87. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Argall, B., Billard, A.: A survey of tactile human-robot interactions. Robotics and Autonomous Systems 58(10), 1117–1176 (2010)

    Article  Google Scholar 

  16. Kuroki, Y., Fukushima, T., Nagasaka, K., Moridaira, T., Doi, T.T., Yamaguchi, J.: A small biped entertainment robot exploring human-robot interactive applications. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2003), Millbrae, California, October 31-November 2, pp. 303–308 (2003)

    Google Scholar 

  17. Hagbarth, K.E., Finer, B.L.: The plasticity of human withdrawal reflexes to noxious skin stimuli in lower limbs. Progress in Brain Research 1, 65–81 (1963)

    Article  Google Scholar 

  18. Serrao, M., Pierelli, F., Don, R., Ranavolo, A., Cacchio, A., Curra, A., Sandrini, G., Frascarelli, M., Santilli, V.: Kinematic and electromyographic study of the nociceptive withdrawal reflex in the upper limbs during rest and movement. Journal of Neuroscience 26(13), 3505–3513 (2006)

    Article  Google Scholar 

  19. Andersen, O.K., Sonnenborg, F.A., Arendt-Nielsen, L.: Modular organization of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle and Nerve 22(11), 1520–1530 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahl, T.S., Paraschos, A. (2012). A Force-Distance Model of Humanoid Arm Withdrawal Reflexes. In: Herrmann, G., et al. Advances in Autonomous Robotics. TAROS 2012. Lecture Notes in Computer Science(), vol 7429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32527-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32527-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32526-7

  • Online ISBN: 978-3-642-32527-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics