Skip to main content

Unordered Constraint Satisfaction Games

  • Conference paper
Book cover Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

We consider two-player constraint satisfaction games on systems of Boolean constraints, in which the players take turns in selecting one of the available variables and setting it to true or false, with the goal of maximising (for Player I) or minimising (for Player II) the number of satisfied constraints. Unlike in standard QBF-type variable assignment games, we impose no order in which the variables are to be played. This makes the game setup more natural, but also more challenging to control. We provide polynomial-time, constant-factor approximation strategies for Player I when the constraints are parity functions or threshold functions with a threshold that is small compared to the arity of the constraints. Also, we prove that the problem of determining if Player I can satisfy all constraints is PSPACE-complete even in this unordered setting, and when the constraints are disjunctions of at most 6 literals (an unordered-game analogue of 6-QBF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ heel of QBF. In: Proc. 20th Natl. Conf. on Artificial Intelligence and 17th Conf. on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2005), pp. 275–281 (2005)

    Google Scholar 

  3. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made practical by virtue of restricted quantification. In: Proc. 20th Intl. Joint Conf. on Artificial Intelligence (IJCAI 2007), pp. 38–43 (2007)

    Google Scholar 

  4. Benedetti, M., Lallouet, A., Vautard, J.: Quantified Constraint Optimization. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 463–477. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bodlaender, H.L.: On the complexity of some coloring games. Int. J. Found. Comput. Sci. 2(2), 133–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Börner, F., Bulatov, A.A., Chen, H., Jeavons, P., Krokhin, A.A.: The complexity of constraint satisfaction games and QCSP. Inf. Comput. 207(9), 923–944 (2009)

    Article  MATH  Google Scholar 

  7. Chen, H.: The complexity of quantified constraint satisfaction: Collapsibility, sink algebras, and the three-element case. SIAM J. Comput. 37(5), 1674–1701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Pál, M.: Optimization, Games, and Quantified Constraint Satisfaction. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 239–250. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Probabilistically checkable debate systems and nonapproximability of PSPACE-hard functions. Chicago J. Theor. Comput. Sci. 4 (1995)

    Google Scholar 

  10. Demaine, E.D.: Playing Games with Algorithms: Algorithmic Combinatorial Game Theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Even, S., Tarjan, R.E.: A combinatorial problem which is complete in polynomial space. J. ACM 23(4), 710–719 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fraenkel, A.S.: Complexity, appeal and challenges of combinatorial games. Theor. Comput. Sci. 303(3), 393–415 (2004)

    Article  MathSciNet  Google Scholar 

  13. Hunt III, H.B., Marathe, M.V., Stearns, R.E.: Complexity and approximability of quantified and stochastic constraint satisfaction problems. Electronic Notes in Discrete Mathematics 9, 217–230 (2001)

    Article  MathSciNet  Google Scholar 

  14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MATH  Google Scholar 

  15. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2000)

    Article  MathSciNet  Google Scholar 

  16. Madelaine, F.R., Martin, B.: A tetrachotomy for positive first-order logic without equality. In: Proc. 26th Ann. IEEE Symp. on Logic in Computer Science (LICS 2011), pp. 311–320 (2011)

    Google Scholar 

  17. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. of the IEEE 77(1), 81–98 (1989)

    Article  Google Scholar 

  18. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: Proc. 5th Ann. ACM Symp. on Theory of Computing (STOC 1973), pp. 1–9 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahlroth, L., Orponen, P. (2012). Unordered Constraint Satisfaction Games. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics