Skip to main content

Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree

  • Conference paper
Database and Expert Systems Applications (DEXA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7446))

Included in the following conference series:

  • 924 Accesses

Abstract

Frequent itemsets are important information about databases, and efficiently mining frequent itemsets is a core problem in data mining area. The divide-and-conquer strategy is very applicable to the problem. Most algorithms adopting the strategy construct a very large number of conditional databases when mining frequent itemsets. Representations of conditional databases and methods of constructing them greatly influence the performance of such algorithms. In this study, we propose a node-set structure for representing a conditional database, and develop a novel node-set-based algorithm, NS, for mining frequent itemsets. During a mining process, all the node-sets derive from a prefix-tree storing the complete frequent itemset information about the mined database. Compared with previous conditional database representations, node-sets are compact and contiguous on which NS can be performed fast. Constructing conditional databases involves counting for items. In NS, the counting procedure and the construction procedure are blended, which saves the time for scanning conditional databases, and further, the major operations of constructing conditional databases are very simple comparisons. Experimental data show that NS outperforms several famous algorithms including FPgrowth* and LCM, ones of the fastest algorithms, for various databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proc. VLDB, pp. 487–499 (1994)

    Google Scholar 

  3. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Matching. In: Proc. ACM SIGMOD, pp. 310–321 (2002)

    Google Scholar 

  4. Ceglar, A., Roddick, J.F.: Association Mining. ACM Comput. Surv. 38(2), 1–42 (2006)

    Article  Google Scholar 

  5. Chen, J., Xiao, K.: Bisc: A Bitmap Itemset Support Counting Approach for Efficient Frequent Itemset Mining. ACM Trans. Knowl. Disc. Data 4(3), 12:1–12:37 (2010)

    Google Scholar 

  6. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct Discriminative Pattern Mining for Effective Classification. In: Proc. ICDE, pp. 169–178 (2008)

    Google Scholar 

  7. Frequent Itemset Mining Implementations Repository, http://fimi.ua.ac.be/

  8. Frequent Pattern Mining Implementations, http://adrem.ua.ac.be/~goethals/software/

  9. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.K., Dubey, P.: Cache-Conscious Frequent Pattern Mining on Modern and Emerging Processors. The VLDB Journal 16(1), 77–96 (2007)

    Article  Google Scholar 

  10. Grahne, G., Zhu, J.: Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

    Article  Google Scholar 

  11. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach*. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  12. Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient Mining of Frequent Patterns Using Ascending Frequency Ordered Prefix-Tree. Data Min. Knowl. Disc. 9(3), 249–274 (2004)

    Article  MathSciNet  Google Scholar 

  13. Liu, G., Lu, H., Yu, J.X., Wang, W., Xiao, X.: Afopt: An Efficient Implementation of Pattern Growth Approach. In: Proc. IEEE ICDM Workshop FIMI (2003)

    Google Scholar 

  14. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From Region Encoding to Extended Dewey: on Efficient Processing of XML Twig Pattern Matching. In: Proc. VLDB, pp. 193–204 (2005)

    Google Scholar 

  15. Schlegel, B., Gemulla, R., Lehner, W.: Memory-Efficient Frequent-Itemset Mining. In: Proc. EDBT, pp. 461–472 (2011)

    Google Scholar 

  16. Schmidt-thieme, L.: Algorithmic Features of Eclat. In: Proc. IEEE ICDM Workshop FIMI (2004)

    Google Scholar 

  17. Tsao, W.K., Lee, A.J., Liu, Y.H., Chang, T.W., Lin, H.H.: A Data Mining Approach to Face Detection. Pattern Recogn. 43(3), 1039–1049 (2010)

    Article  MATH  Google Scholar 

  18. Tsay, Y.J., Hsu, T.J., Yu, J.R.: FIUT: A New Method for Mining Frequent Itemsets. Inf. Sci. 179(11), 1724–1737 (2009)

    Article  Google Scholar 

  19. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets. In: Proc. IEEE ICDM Workshop FIMI (2004)

    Google Scholar 

  20. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by Pattern Similarity in Large Data Sets. In: Proc. ACM SIGMOD, pp. 394–405 (2002)

    Google Scholar 

  21. Zaki, M.J., Gouda, K.: Fast Vertical Mining Using Diffsets. In: Proc. ACM SIGKDD, pp. 326–335 (2003)

    Google Scholar 

  22. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, JF., Liu, M. (2012). Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree. In: Liddle, S.W., Schewe, KD., Tjoa, A.M., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2012. Lecture Notes in Computer Science, vol 7446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32600-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32600-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32599-1

  • Online ISBN: 978-3-642-32600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics