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Abstract

We investigate a model-theoretic property that genersilire classical notion of
“preservation under substructures”. We call this propprgservation under sub-
structures modulo bounded coresd present a syntactic characterization®ja
sentences for properties of arbitrary structures definaplEO sentences. As a
sharper characterization, we further show that the couekistential quantifiers
in the &9 sentence equals the size of the smallest bounded core. Weraksent
our results on the sharper characterization for specighiemts of FO and also
over special classes of structures. We present a (not F@athéf) class of finite
structures for which the sharper characterization failg, for which the classi-
cal tos-Tarski preservation theorem holds. As a falloubwf studies, we obtain
combinatorial proofs of the Los-Tarski theorem for somehaf aforementioned
cases.
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1 Introduction

Preservation theorems have traditionally been an impbat@a of study in model the-
ory. These theorems provide syntactic characterizatibrseimantic properties that
are preserved under model-theoretic operations. One afaHeest preservation the-
orems is the Los-Tarski theorem, which states that oveitrarp structures, a First
Order (FO) sentence is preserved under taking substrciffirie is equivalent to a
1Y sentence [5]. Subsequently many other preservation theoveere studied, e.g.
preservation under unions of chains, homomorphisms, dneducts, etc. With the
advent of finite model theory, the question of whether thisertems hold over finite
structures became interesting. It turned out that seveesigpvation theorems fail in
the finite [1, 7, 9]. This inspired research on preservati@otems over special classes
of finite structures, e.g. those with bounded degree, balitréewidth etc. These ef-
forts eventually led to some preservation theorems beiagdirered” [2, 3]. Among
the theorems whose status over the class of all finite stretuas open for long was
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the homomorphism preservation theorem. This was recesslylved in [10], which
showed that the theorem survives in the finite.

In this paper, we look at a generalization of the ‘preseovatinder substructures’ prop-
erty that we calpreservation under substructures modulo bounded cdreSection 2,
we show that for FO sentences, this property has a syntdwi@cterization in terms
of 9 sentences over arbitrary structures. As a sharper cheratien, we state our
result (but provide the proof later in Section 7) that foresizes bounded by a number
B, there is a syntactic characterization in term&ffentences that use atmasexis-
tential quantifiers. In Section 3, we discuss how the notiaelativizationcan be used
to prove the sharper characterization in special caseslaodiscuss its limitations.
We present our studies for special classes of FO and oveiasptsses of structures
in Sections 4 and 5. As a fallout of our studies, we obtain doatbrial proofs of the
classical Los-Tarski theorem for some of the aforesaidigpeases, and also obtain
semantic characterizations of natural subclasses ahthizagment of FO. In Section
7, we provide the proof of the sharper characterizationgugiols from classical model
theory and some notions that we define. We conclude with mumsstor future work
in Section 8.

We assume that the reader is familiar with standard notati@hterminology used in
the syntax and semantics of FO (see [8]\dcabularyr is a set of predicate, function
and constant symbols. In this paper, we will restrict omelto finite vocabularies
only. A relational vocabularyhas only predicate and constant symbols, apdirely
relational vocabulanhas only predicate symbols. We denotefd®(7), the set of all
FO formulae over vocabulary. A sequencéz,...,xy) of variables is denoted by
z. We will abbreviate a block of quantifiers of the forQu; . .. Qz by Qz, where
Q € {v,3}. By X? (resp. I19), we mean FO sentences in Prenex Normal Form
(PNF) over an arbitrary vocabulary, whose quantifier preégibs with a3 (resp. V)
and consists of — 1 alternations of quantifiers. We use the standard notions of
structures, substructures and extensions, as in [8]. Givestructures\M and N, we
denote byM C N that M is a substructure aV (or NV is an extension off). Given
M and a subse$' (resp. a tuple: of elements) of its universe, we denote h§(.5)
(resp.M (a)) the smallest substructure (under set inclusion orderitiggouniverse) of
M containingS (resp. underlying set af) and call it the substructure @f/ induced
by S (resp. underlying set af). Finally, by sizeof M, we mean the cardinality of
its universe and denote it Qy/|. As a final note of convention, whenever we talk
of FO definability in the paper, we mean definability via FOtseres (as opposed to
theories), unless stated otherwise.

2 Preservation under substructures modulo cores

We denote byPS the collection of all classes of structures, in any vocafyulahich
are closed under taking substructures. This includesedashich are not definable in
any logic. We letPS denote the collection of FO definable classeB$h We identify
classes inP S with their defining FO sentences and will henceforth tiéatas a set of
sentences. We now consider a natural generalization @S3fpeoperty. Our discussion
will concern arbitrary (finite) vocabularies and arbitratyuctures over them.



2.1 The case of finite cores

Definition 1 (Preservation under substructures modulo finite cojes

A class of structures$' is said to bepreserved under substructures modulo a finite core
(denotedS € IPSCy), if for every structurel € S, there exists a finite subseét of
elements of\/ such that ifA/; € M and M; containsC, thenM; € S. The seC'is
called acore of M w.r.t. S. If S'is clear from context, we will call’ as acore of M.

Note that any finite subset of the universeldfcontaining a core is also a core bf.
Also, there can be multiple cores df having the same size. inimalcore of M is

a core, no subset of which is a core/df.

We will usePSC/ to denote the collection of all classes preserved undetrsiudbgres
modulo a finite core. Similarly, we will useSC' to denote the collection of FO defin-
able classes iftfSC;. We identify classes i*SC with their defining FO sentences,
and will henceforth treaP SC/; as a set of sentences.

Example 1: Let S be the class of all graphs containing cycles. For any grapgh the
vertices of any cycle is a core of the graph. Tisus PSCy.

Note thatPS C PSCy since for any class ii#S and for any structure in the class, any
elementis a core. However it is easy to check that above example is not i&iS; so
PSC; strictly generalize®S. Further, the FO inexpressibility ¢f shows that?SC ¢
contains classes not definable in FO.

Example 2: Considerp = JaVyFE(x,y). In any graph satisfying, any witness for:
is a core of the graph. Thuse PSCy. In fact, one can put a uniform bound of 1 on
the minimal core size for all models ¢f

Again it is easy to see thdtS C PSC;. Specifically, the sentenegin Example 2 is
notin PS. This is because a directed graph with exactly two nadeasdb, and having
all directed edges except the self loop @models¢ but the subgraph induced lay
does not modep. HencePS C PSC}. Extending the example above, one can show
that for any sentencg in X9, in any model ofp, any witness for thé quantifiers in

¢ forms a core of the model. Hen&& C PSCy. In fact, for any sentence iR,
the number o quantifiers serves as a uniform bound on the minimal corefsize
all models. Surprisingly, even for an arbitrapye PSCY, it is possible to bound the
minimal core size for all models!

Towards the result, we use the notioncbh&inandunion of chainfrom the literature.
The reader is referred to [5] for the definitions. We denothaircasM; C M C ...
and its union agJ, -, M;. We say that a sentengds preserved under unions of chains
if for every chain of models o, the union of the chain is also a modeld@fWe now
recall the following characterization theorem from thes6f®].

Theorem 1 (Chang-to5-Suszko) A sentenges preserved under unions of chains iff
it is equivalent to d1 sentence.

Now we have the following theorem.

Theorem 2 A sentence € PSC/ iff ¢ is equivalent to &9 sentence.



Proof: We infer from Theorem 1 the following equivalences.

¢ is equivalent to &3 sentence iff

—¢ is equivalent to d12 sentence iff

\V/M17M27 R ((Ml - M2 cC .. ) A (M = UiZI Ml) /\\V/Z(MZ ': _|¢)) — M ': _‘gf)
iff

VM, Ma,... (M1 C Mz C..)A(M =Ujsy Mi) N(M | ¢)) — Fi(M; = ¢)

Assume¢ € PSC;. SupposeM; C M, C ...is a chain,M = |J,-,M; and
M = ¢. Then, there exists a finite cot@ of M. For anya € C, there exists an
ordinali, s.t. a € M;, (elsea would not be in the uniord/). SinceC is finite, let
i = max(i,| a € C). Sincei, < i, we haveM;, C M;; hencean € M; foralla € C.
ThusM; containsC. SinceC is a core ofM andM; C M, M; = ¢ by definition of
PSCy. By the equivalences shown aboveis equivalent to &9 sentence. We have
seen earlier that C PSCy. [ |

Corollary 1 If ¢ € PSCy, there exist®3 € N such that every model gf has a core
of size atmosB.

Proof: Take B to be the number of quantifiers in the equivaleit) sentence. M

Given Corollary 1, it is natural to ask 1B is computable. In this context, the following
recent unpublished result by Rossman [11] is relevant|dledenote the size af.

Theorem 3 (Rossman) There is no recursive functipnN — N such thatifp € P.S,
then there is an equivaleil) sentence of size atmaft|¢|). The result holds even for
relational vocabularies and further evenfis is replaced withP.S N X29.

Corollary 2 There is no recursive functioh: N — N such thatifp € P.S, then there
is an equivalenil? sentence with atmogt(|¢|) universal variables. The result holds
even for relational vocabularies and further eve®i§ is replaced withP.S N X9.

Proof: Let ¢ = V"z(2) be all} sentence equivalent 6 wheren = f(|4|). Let
k be the number of atomic formulae ifh Since¢ andvy have the same vocabulary,
k € O(|¢| - n'?!). The size of the Disjunctive Normal Form gfis therefore bounded
above byO(k - n - 2%). Hencely| is a recursive function gfp| if f is recursive. M

Theorem 3 strengthens the non-elementary lower bound givggj. Corollary 2 gives
us the following.

Lemma 1 There is no recursive functiofi : N — N s.t. if¢ € PSCy, then every
model of¢ has a core of size atmogt|¢|).

Proof: Consider such a functiori. For any sentence in a relational vocabulary
st ¢ € PS, —¢ is equivalent to &9 sentence by os-Tarski theorem. Hence
-¢ € PSCy. By assumption abouf, the size of minimal models ofi¢ is bounded
above byn = f(|¢|) + k, wherek is the number of constants in Therefore,—¢

is equivalent to ad” sentence and hengeis equivalent to & sentence. Corollary



2 now forbidsn, and hencef, from being recursive. It is easy to see that the result
extends to vocabularies with functions too (by using funtdiin a trivial way). W

Corollary 1 motivates us to consider sentences with bourdess since all sentences
in PSCy have bounded cores.

2.2 The case of bounded cores
We first give a more general definition.

Definition 2 (Preservation under substructures modulo a bounded dofeclass of
structuresS is said to bepreserved under substructures modulo a bounded(dere
notedS € PSC), if S € PSC; and there exists a finite cardin& dependent only on
S such that every structure ifi has a core of size atmost.

The collection of all such classes is denote®S{. LetPSC(B) be the sub-collection

of PSC in which each class has minimal core sizes bounde®byThenPSC =
Up>o PSC(B). An easy observation is th&#SC(i) € PSC(j) for i < j. As before,

PSC and eactPSC(B) contain non-FO definable classes. As an example, the class of
forests is iINPSC(0). Let PSC (resp. PSC(B)) be the FO definable classesHSC
(resp.PSC(B)). Observe that’SC(0) is exactlyPS and PSC = |z, PSC(B).
Therefore,PSC generalizes?S. Further, the hierarchy i®®SC' is strict. Consider

¢ € PSC(k) given by¢ = Jz1 ... 3z A\, j<p, ~ (2 = ;). Theng ¢ PSC(I)

forl < k. From Corollary 1, we have

Lemma 2 PSC = PSCy.

As noted earlier, &J sentence with B existential quantifiers is i SC with mini-
mal core size bounded ly. Hencep € PSC(B). Inthe converse direction, Theorem
2 and Lemma 2 together imply that for a sentesce PSC(B), there is an equivalent
%9 sentence. We can then ask the following sharper questiony o PSC(B), is
there an equivalert sentence having existential quantifiers?

Theorem 4 A sentenceb € PSC(B) iff it is equivalent to ax9 sentence withB
existential quantifiers.

The proof of this theorem uses tools from classical modeahand some notions that
we define. We will present it in Section 7. Before that we shatisider Theorem 4
for special fragments of FO and for special classes of sirast Towards this, we first
look at the notion of relativization from the literature.

3 Reuvisiting Relativization

For purposes of our discussion in this and remaining sestadrthe paper, we will
assume relational vocabularies (predicates and conktants

A notion that has proved immensely helpful in proving mosbaf positive special
cases of Theorem 4 is that @flativization Informally speaking, given a sentenge



we would like to define a formula (with free variablgswhich asserts that is true
in the submodel induced hy. The following lemma shows the existence of such a
formula.

Lemma 3 If 7 is a relational vocabulary, for ever§’O(r) sentences and variables
z = (x1,...,x1), there exists guantifier-freformula¢|; with free variablest such
that the following holds: Lef\/ be a model and = (as,...,ax) be a sequence of
elements of\/. Then

(M, ay,...,a) E ol iff M({a1,...,a1}) E &

Proof: Let X = {x1,...,zr} andC be the set of constants in First replace
everyV quantifier in¢ by —3. Then replace every subformula ¢f of the form
ExX(xvylv"'ayk) by\/zGXUCX(Zayla"'ayk)' u
We refer tog|; as ‘¢ relativized toz’. We shall sometimes denoté; aso|(,, ...,
(thoughz is a sequence and, ...,z } IS a set).

We refer tog|z as ‘¢ relativized toz’. For clarity of exposition, we will abuse notation
and usep|(,, ... ...} to denotep|; (althoughz is a sequence and:y, . .., 2 } is a set),

whenever convenient.
We begin with the following observation.

Lemma 4 Over any given clas§ of structures inPS, if ¢ <> Vz; ... Vz, wherep is
quantifier-free, thew < 1) wherey = Vzy ... V2,2, 203

Proof: It is easy to see thap — . Let M € C be s.t. M &= 1. Leta be an
n—tuple from M. Then, by Lemma 3M(a) = ¢. SinceC € PS, M(a) € C
so thatM (a) | Vz1...Vz,o. ThenM(a) E ¢(a) and henceM = ¢(a). Then
M EVz ... Vz,p and hencé | ¢. [ |

Using tos-Tarski theorem and the above lemma, it follovat th sentence in PS
has an equivalent universal sentence whose matthitself relativized to the univer-
sal variables. However we give a proof of this latter facedily using relativization,
and hence an alternate proof of the Los-Tarski theorem. Mfghasize that our proof
works only for relational vocabularies (Los-Tarski is kvioto hold for arbitrary vo-
cabularies). This would show that relativization helps ts/p Theorem 4 for the case
of B=0.

3.1 A proof of Los-Tarski theorem using relativization

We first introduce some notation. Givenra-structureM, we denote byr,,, the
vocabulary obtained by expandingvith as many constant symbols as the elements of
M - one constant per element. We denoteMythe 7, structure whose—reduct is

M and in which each constant i, is interpreted as the elementf corresponding

to the constant. It is clear that uniquely determined. Finally, D(M) denotes the
diagramof M - the collection of quantifier free,; —sentences true iM.



Theorem 5 (Los-Tarski) A FO sentencgis in PS iff there exists am € N such that
¢ is equivalenttorzy ... V2, @iz, 20y

Proof:

Consider a set of sentences= {{, | k € N, § = V21 ... V29|, .. -1 }. Observe
thaté,1 — & so that a finite collection of;.s will be equivalent t@,- wherek™* is
the highest index appearing in the collection. We will show that«~> I". Once we
show this, by compactness theoretrx> I'; for some finite subsdt; of I' and by the
preceding observatiom,is equivalent tc,, € I'; for somen.

If M = ¢, then sincep € PS, every substructure of it modefs- in particular, the
substructure induced by aryelements of\M/. ThenM £ & for everyk and hence
M=T.

Conversely, supposk/ = I'. Then every finite substructure 8f models¢. Let M
be ther,, structure corresponding to/. Consider any finite subsétof the diagram
D(M) of M. LetC be the finite set of constants referred todn Clearly M|.y¢,
namely the(r U C)-reduct of M modelsS since M = D(M). Then consider the
substructureM; of M|, ¢ induced by the intepretations of the constant€'ofthis
satisfiesS. Now sinceC is finite, so isM;. Then ther—reduct of M; - a finite
substructure of\/ modelse.

Thus S U {¢} is satisfiable byM;. SinceS was arbitrary, every finite subset of
D(M) U {¢} is satisfiable so that by compactneBs)M ) U {¢} is satisfiable by some
structure say\. Then ther—reductN of A is s.t. (i) M is embeddable itV and (ii)
N E ¢. Sincep € PS, the embedding o} in N modelsp and hencé/ = ¢. N

The above proof shows that fgr € PS, there is an equivalent universal sentence
whose matrix isp itself, relativised to the universal variables. In fact, logmma 4,
there is an optimal (in terms of the number of universal \@es) such sentence.

An observation from the proof of Theorem 5 is that, the Lasski theorem is true
over any class of structures satisfying compactness - hiengarticular the class of
structures definable by a FO theory (indeed this result isvkoBut there are classes
of structures which are not definable by FO theories butsstikfy compactness: Con-
sider any FO theory having infinite models and consider taescbf models of this
theory whose cardinality is not equal to a given infinite aaal This class satisfies
compactness but cannot be definable by any FO theory duewerlieim-Skolem
theorem. Yet Los-Tarski theorem would hold over this class

Having seen the usefulness of relativization in provingdreen 4 whenB equals 0,
it is natural to ask if this technique works for higher valaoés3 too. We answer this
negatively.

3.2 Limitations of relativization

We show by a concrete example that relativization cannotdeel to prove Theorem
4 in general. This motivates us to derive necessary and igufficonditions for rela-
tivization to work.

Example 3 Considerp = JaVyF(z,y) overr = {E}. Note thatg is in PSC(1).
Supposep is equivalent toyy = JxV"y¢l,; for somen. Consider the structure



M = (Z,<) namely the integers with usual linear order. Any finite substructure
of M satisfiesp since it has a minimum element (under the linear order). Taking

x to be any integer, we see thiaf = . HoweverM [~ ¢ sinceM has no minimum
element - a contradiction. The same argument can be useadtotblats cannot be
equivalent to any sentence of the foffhz V™ ¢|z5.

We now give necessary and sufficient conditions for relzditton to work. Towards
this, we introduce the following notion. Considerc FO(r) s.t. ¢ € PSC(B).
Consider a vocabularys obtained by expanding with B fresh constants. Consider
the cIassS‘g” of 7p-structures with the following properties:

1. For each M, ay,...,ap) € S3' whereM is ar—structure anduy, ...,ap €
M, M = ¢ and{as,...,ap} forms a core of\l w.r.t. ¢.

2. For each modeM of ¢, for each coreC' = {ay,...,a;} of M w.rt. ¢ s.t.
I < B and for each functiop : {1,..., B} — C with range C, it must be that

(M,p(1),...,p(B)) € 53".

We now have the following.

Theorem 6 Giveng € PSC(B), the following are equivalent.

1. 53" is finitely axiomatizable.

2. ¢ is equivalenttad®z vy ¢|z; for somen € N.

3. ¢ is equivalent to &”Vv* sentence) such that in any model/ of ¢ and¢, the
following hold:

(a) The underlying set of any witness foiis a core ofM w.r.t. ¢.

(b) Conversely, ilC is a core of M w.rt. ¢, z1,...,zp are the3 variables
of ¢ and f : {z1,...,25} — C is any function with range”, then
(f(x1),..., f(xp))is withess for) in M.

Proof:

(1) = (2): Let 53" be finitely axiomatizable. Check tha®' € PS so that by £0s-
Tarski theorem, it is axiomatizable byiE FO(rp)-sentence) having sayn V quan-
tifiers. Further, by Lemma 4/ is equivalent toy = V"z¢|;. Now considerp, =
3Bz V" ¢|z5. Firstly, from Lemma 5¢ — . Conversely, supposk/ = . Let
ai,...,ap be witnesses and consider the-structureM p = (M, aq,...,ap). Now
Mp = V"y ¢lz5. We will show thatMp = ~. Considerby,...,b, € M and let
My = Mp({b1,...,bn}). ThenM; = Vg ¢|z3. Check that the—reduct of M
(i) models¢ and (ii) contains{as,...,ap} as a core. Theds; € S3' and hence
M, = 4. Sinceby, ..., b, were arbitraryM g | . Sincey <« ¢ andy axiomatizes
53!, ther—reduct of M, namely)M, modelse.

(2) — (3): Takey to be3dPz vy ¢|z;. Consider a modell of ¢ andi. The setC of
elements of any witness far forms a core of\/ w.r.t. ¢). Then since) < v, C'is also



a core ofM w.r.t. ¢. Conversely, consider a co€eof M w.r.t. ¢. Then any substruc-
ture of M containingC satisfiesp. Then check that elements@fform a witness fot).

(3) = (1): Let ¢ « ¢ wherey = 3Bz V"3(z, i) wheref is quantifier free and
satisfies the conditions mentioned in (3). Consides V"j S[x1 — c¢1,...,x5 —
cp] whereey, ..., cp are B fresh constants and; — ¢; means replacement of;
by c¢;. If Mg = (M,ay,...,a) E ¢, thenM [ ¢ and henceVl = ¢. Since
ai,...,ap are witnesses fop in M, they form a core of\/ w.r.t. ¢ by assumption,
so thatMp € Sg”. Conversely, itMp = (M, ay,...,ap) € Sg”, thenM = ¢ and
ai,...,ap forma core inM. Then by assumption\/ = ¢ anday,...,ap are wit-
nesses fot. ThenMp = ¢. To sum upy» axiomatizess3'". [ |

Considerg and M in the Example 3 above. Take any finite substructureof M - it
modelsp. There is exactly one witness fgrin A1, namely the least element under
However every element if/; serves as a core. The above theorem shows thatho
sentence will be able to capture exactly all the cores thrdtsg variable.

In the following sections, we shall study Theorem 4 for sal/epecial classes of FO
and over special structures. Interestingly, in most of #iees in which Theorem 4 turns
out true, relativization works! However we also show a caswlich relativization
does not work, yet Theorem 4 is true.

4 Positive Special Cases for Theorem 4

4.1 Theorem 4 holds for special fragments of FO

Unless otherwise stated, we consider relational vocaiesldnroughout the section.
The following lemma will be repeatedly used in the subsetjtesults.

Lemma5 Letgp € PSC(B). For everyn € N, ¢ implies32z V"jj ¢|z5.

Proof: SupposeV = ¢. Since¢p € PSC(B), there is a cor€' of M of size at most
B. Interpretz to include all the elements @f (in any which way). Sinc€’ is a core,
for any n-tuple d of elements of\/, having underlying sebD, the substructure af/
induced byC' U D modelsp. Then(M, a,d) = ¢|z; for all d from M. [ |

Lemma 6 Let 7 be a monadic vocabulary containirigunary predicates. Lep €
FO(r) be a sentence of ranks.t. ¢ € PSC(B). Then¢ is equivalent ta) where
Y = 3Bz V"y ¢|zy; Wheren = r x 2%, For B = 0, n is optimal i.e. there is an FO
sentence il?SC(0) for which any equivalerily sentence has atleastquantifiers.

Proof: That¢ implies« follows from Lemma 5. For the converse, suppdge= 1
wheren = r x 2¥. By an Ehrenfeucht-Fraissé game argument, we can shawfha
contains a substructufes such that ()M =, Mg, with [Mg| < n and (ii) for any
extensionV!’ of Mg in M, M’ =, Ms. The substructuré/s is obtained by taking up
to r elements of each coloure 27 present in}/. An element in structureM is said
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to have colouk if for every predicate®? € X, M |= P(a) iff P € ¢. SinceM = v,
there exists witnessesfor ¢ in M. Chooseb to be ann-tuple which includes the
elements of\/s. This is possible becau$d/s| < n. Then we have(M, a,b) = ¢|zy
so thatM (ab) |= ¢. But Mg C M(ab) C M so thatM (ab) =, M. ThenM |= ¢.

To see the optimality of for B = 0, consider the sentengewhich states that there
exists at least one colour € 27 such that there exist at most— 1 elements with
colourc. The sentence can be written as a formula with rank as the disjunction
over all colours, of sentences of the foray;Jzs - - - axr,lvxr(/\j;f Ty £ X)) —
~C(x,). From the preceding paragraphs V"4 ¢|; wheren = r x 2*. Suppose
¢ is equivalent to &* sentence for some < n. Then by Lemma 4¢ + ¢ where
v = ¥y ¢|z. Then consider the structufd, which hasr elements of each colour.
Clearly, M [~ ¢. However check that everysized substructure dff modelsp. Then
M = ¢ and hencé! |= ¢ - a contradiction. |

Lemma 7 LetS € PSC(B) be afinite collection of —structures so tha$' is definable
by aXj sentences € PSC(B). ThenS is definable by the sentengewherey) =
3B% Yy ¢|zy for somen € N,

Proof: Check that all structures ifi must be of finite size so thatexists. Let the size
of the largest structure i§ be atmost:. Consider). Lemma 5 shows that — ).
Conversely, suppos¥ = . Then there exists a witnegs.t. any extension a¥/ (a)
within M with atmostn additional elements modefs Sincel is of size atmost,
taking the extensio/ of M (a), we haveM |= ¢. Since¢ definesS so does). W

Lemma 8 Considerg € 113 given byp = vz 3™y 3(Z, y) wheref is quantifier free.
If € PSC(B), theng is equivalent ta) wherey = 384 V"0 ¢|4s.

Proof: From Lemma 5¢ — 1. For the converse, |8/ = ¢ and leta be a witness.
Consider am—tupleb from M. ThenM; = M (ab) is s.t. M; |= ¢. Then forz = b,
there existg = d s.t.d is anm—tuple fromM; andM; |= 3(b,d). ThenM = B(b,d)
sinceM; C M. HenceM [ ¢. [ |

Lemma 9 Suppose) € PSC(B) and—¢ € PSC(B’). Then¢ is equivalent to)
wherey) = 382 V5§ ¢|zy.

Proof: From Lemma 5¢ implies«. For the converse, suppodé = «. Then there
is a witnessi for ¢ s.t. for anyB’-tupleb, the substructure induced y i.e. M (ab)
modelsy. Supposé! |~ ¢. ThenM | —¢ so that there is a coi€ of M w.r.t. =¢,
of size at most3’. Let d be aB’-tuple which includes all the elements 6f Then

M (ad) = ¢. But M (ad) C M containsC' so thatM (ad) = —¢ — a contradiction.ll

Observe that for the special casel®f= 0, we get combinatorial proofs of £0s-Tarski
theorem for the fragments mentioned above. Moreover athe$e proofs and hence
the results hold in the finite. We mention that the result ofnb®ea 8 holding in the
finite was proved by Compton too (see [7]). We were unwareisftthtil recently and
have independently arrived at the same result. The readefeised to Section 6 for
our studies on morpositivecases of £os-Tarski in the finite.
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Interestingly, Lemma 9 has implications for thd fragment of FO. Definé\9(k, 1) C
AJ to be the class of sentences which havé®a* and av'3* equivalent. Note that
AY = Uy k>0 A5(K, 1). Lemma 9 gives us the following right away.

Theorem 7 The following are equivalent:
1. ¢ € PSC(k)and—¢ € PSC(l).
2. ¢ is equivalent to a*Vv' and av'3* sentence.
3. ¢ € AY(k,1).

As a corollary, we see thahi(k,1) is a finite class upto equivalence. We are not
aware of any other semantic characterization of these adragments ofA9. This
highlights the importance of the notion of cores and thessikereof.

4.2 Theorem 4 over special classes of structures

We first look at Theorem 4 over finite words which are finite stinges in the vocab-
ulary containing one binary predicate (always interpreted as a linear order) and a
finite number of unary predicates (which form a partition lné universe). And we
obtain something stronger than Theorem 4. Before that, watiorethat the idea of
relativization can be naturally extended to MSO. Gigan MSO and a set of variables
7Z ={z,...,2n}, ¢|z is obtained by first converting allX to -3X and then replac-
ing every subformulaX x(X,...) with \/yc ;((A,ey X(2) A Aeqy 7X(2)) A
Xx(X,...)). The resulting=O formula is then relativized t& and simplified to elim-
inate the (original) SO variables. As before, abusing mmatwe useg|z and ¢z
interchangeably.

Note: We at times will refer to the ‘structure’ connotatidreonvord and at other times
refer to the ‘string’ connotation of it. This would howeveg blear from the context
(typically language-theoretic notions used for a word wiaukan we are talking about
it as a string whereas model-theoretic notions used for itldvsmean we are referring
to it as a structure).

Theorem 8 Over words, a MSO sentengés in PSC(B) iff itis equivalent to) where
Y = 3IB2VF |5, for somek € N.

Proof sketch We use the fact that over words, by the Buchi-Elgot-Trakbtot theo-
rem [4], M SO sentences define regular languages. The ‘If’ direction $y.efeor the
‘Only if’ direction, let the regular language defined by be recognized by an state
automaton, sayM. If there is no word of length- N = (B + 1) x nin L, thenL is
a finite language of finite words and hence from Lemma 7, we ane dElse suppose
there is a word of length IV in L. Then considet above fork = N. Itis easy to ob-
serve that) implies. In the other direction, suppose= v for some wordw. Then
there exists a set of elementsy, ..., i, s.t. ()m < Bandi; < is--- < i,, and (ii)
every substructure ab of size atmostV + m containingA models¢. From Lemma
10 below, there exists a substructurgof w containingA such that (i)w,| < N and
(i) wy € Liff w € L. Thenw; models¢ and hencev = ¢. Thusy implies ¢ and
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hence is equivalent to. [ |

Before going into the proof of the lemma, we briefly explaig thtuition. Letg; be
the state reached by automatdfiupon reading the subword(1 . . . 7;]. The subword
w((i; +1),...1;41] takesM from ¢; to ¢;41 through a sequencg of states. Since
M has onlyn states, ifw[(i; + 1),...4,41] is long, thenS will contain at least one
loop. Then getting rid of the subwords that give rise to lqeps will be able to obtain

a subword ofw([(i; + 1), ...4;41] that takesM from g; to ¢;41 without causingM to
loop in between. It follows that this subword must be of léngt mostn. Collecting
such subwords ofv[(i; + 1),...i;41] for eachj and concatenating them, we get a
subword ofw of length at mostV containing setd that takesM from the initial state
to the same state as We now formalize this intuition.

Lemma 10 Let L be a regular language having am state automaton accepting it.
Given a natural numbeB, consider a wordv € ¥* oflength> N = (B+1) xn. Let
A= {i1,...,im} Wherei; <is...<1i, beagiven set of elements from the universe
of w. Then there is a substructute, of w containingA such that (i)|w;| < N and

(i) wy € Liffw € L.

Proof:

Let M = (Q, %, 6, qo, F') be a DFA acceptind. where@ = {qo, ..., q,—1} is the set
of states}. is the alphabetj is the transition functiony is the initial state and” is
the set of final states. We use the following notatiorz i§ a sequence of objects, then
we usez(k) to denote thé:** element ofz andz [k . . . /] to denote the subsequence of
z formed by thek®™®, (k + 1)1, ... 1" elements of for k,ls.t. 1 < k < [ < (length

of 2).

Letqg(i + 1), 1 < i < |w| be the state of) after reading the word [1 . ..4]. We take
q(1) to bego. Thenletg = (q(i))1<i<(w|+1) b€ the sequence of these states. We are
given A = {i1,...,i,} Which is a subset ofn elements of the universe af. Let

iop = 1 andi,,+1 = |w| + 1. Forj € {0,...,m}, considerg [i; ...i;41]. Setp = i;
tos = ;41 — 1. We collect a sef” of indices betweemp ands using the procedure
below:

Initialize i to p.

1. If i > s, then stop.
2. If i = s, then puti into 7" and increment by 1.

3. If i < s, thenletk s.t. p < k < s be the highest index such thati) = ¢(k).
Then putk into 7" and update the value oto bek + 1.

At the end of this procedure, let the indiceslirbeky, ..., k; wherek; < ke < --- <
k; if T is non-empty. Note thaf is empty iffi; = i;41 only if j = 0. Also note that
at termination, the value afmust bes + 1. Finally note tha(i;), g(ki1 + 1), g(k2 +
1),...,q(k;) mustall be distinct so that< n.

Then consider the subwotd; of w given by
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€ if T is empty
w; =
7 Yw(ky) - w(ks) - --w(k) if Tis non-empty

Observe thatw;| < n. Letry,...,r be the states the automatdsn goes through
whenw; is applied to state(i, ).
We consider the following cases:

1. T is non-empty.

Now from the wayk; was chosen by the above procedyré,) = ¢(k1). Then
if M is in stateg(i;), onw(ky), it moves to state; given byr, = g(k1 + 1).
Similarly, the index:; is s.t.q(k2) = q(k1+1) so thatifM is in stater;, then on
w(ks), it moves to state, given byre = ¢(ko +1). Continuing this way we find
that onw(k;), if M is in stater;_1, it moves to state; given byr, = q(k; + 1).
Now as observed above, at termination, the valuenfist bes+1 = i;;. This
can happen in only two ways: (a) In the previous iteratiorheffirocedure, step
(2) was executed in which casavas putin? - thenk; = s. (b) In the previous
iteration of the procedure, step (3) was executed in whicle gagain was put
into T so thatk; = s. Thenin either cask;, = s = 4,41 —1 sothat; = ¢(i;+1).

Thus we see that both; andw [i, ... (i;41 — 1)], when applied ta\/ in state
q(i;), takelM to the same state, namej{i; 1 ).

2. T'is empty.
Thenw; = e andi; = i;4; in which casew[i; ... (i;41 — 1)] = € so that
both these words applied ff in stateq(i;), take M to the same state, namely
q(ij+1)-

Then consider the word; = wq - w1 - - - w,,. From the above observations, it follows
thatw; applied to the initial state of/ takes)M to the same state as Thenw; € L
iff w € L. Further since for each |w,| < n, we have thatw;| < (m+ 1) xn <
(B4+1)xn=N. |

Returning to Theorem 8, observe that for the special cage of 0, we obtain £o05-
Tarski theorem for words and also give a bound for the numbésan the equivalent
119 sentence in terms of the number of states of the automatop. f(We have not
encountered this result in our literature survey.

Before proceeding ahead, as a slight diversion, we give pleimproof of Los-Tarski
theorem over words. In fact, over words, we have the follgugtionger result.

Lemma 11 Consider any sef of words which is closed under taking substructures.
ThenS can be defined by HY sentence.

Proof: ConsiderS = ¥* \ S - the complement of. SincesS is closed under taking
substructuress is closed under taking extensions. Then consider th& séiminimal
words of S, i.e. words ofS for which no subword is contained ifl. We show that
T must be finite. Suppos& were infinite. If we arrange the words @f to form
a sequence - which is infinite - then by Higman’s lemma, thergome word in the
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sequence which is a subword of another in the sequence. Téewisrsome word of

T is a subword of another word ifi. But that contradicts the minimality of the latter
word.

ThenT is finite. Taking the disjunction of the existential clossigf the diagrams of

the words ofT, we get ax{ sentence defining. Then taking the negation of this
sentence, we get the desird{l sentence defining. [ |

Thus contrary to the general setting where it is not necgdsara set of structures
preserved under substructures to be even FO-expresshle dlone being definable
by aIl? sentence, over wordE! sentences show much greater power.

We return to Theorem 4 now. So far, relativization has woikeall the cases we have
seen. We now give an example of a class of structures ovehwalativization fails,

yet Theorem 4 is true.

Consider a subclag3 of bounded degree graphs in which each graph is a collection
(finite or infinite) of orientedpaths (finite or infinite). For clarity, by oriented path we
mean a graph isomorphic to a connected induced subgraplke gféiph(V, F') where

V =ZandE = {(i,i+ 1) |i € Z}. Observe thaf can be axiomatized by a thedfy
which asserts that every node has in-degree atmost 1 ardkbgute atmost 1 and that
there is no directed cycle of lengkhfor eachk > 0. We first show the following.

Lemma 12 ForeachB > 1, there is a sentence € PSC/(B) which is not equivalent,
overC, to anyy of the form3?z vy ¢|z; .

Proof: Considerp which asserts that there are atleBstlements ofotal degree atmost
1 where total degree is the sum of in-degree and out-degriearlCy € PSC(B)
since it is expressible as#'v* sentence. Supposeis equivalent ta) of the form
above for somer € N. ConsiderM < C which is a both-ways infinite path so that
every node inM has total degree 2 - thelW [~ ¢. ConsiderB distinct points on
this path at a distance of atleast from each other and form B—tuple saya with
them. Letb be anyn—tuple from M. Now observe thaf/ (ab) is a finite structure
which has atleasB distinct paths (0-sized paths included). Thefifab) = ¢ so that
(M, a,b) = ¢|zy. Sinceb was arbitraryM |= 1 so thatM = ¢. Contradiction. M

However Theorem 4 holds ovét

Theorem 9 Over the clasg of graphs defined above,c PSC(B) iff ¢ is equivalent
to a3Pv* sentence.

Proof: If - = {E} is the vocabulary o, let 75 be a vocabulary obtained by addding
B fresh constants, . .., cp tor. Given a class$ of 7—structures, defin€g to be the
class ofall 7z —structures s.t. the—reduct of each structure iiz is in S. Then the
proof can be divided into two main steps. Belendenotes elementary equivalence.
Step 1: Giveng, define class’ C C such that for every structuré € Cg, there exists
structureD € Cj; such thatd = D (Property ). Since compactness theorem holds
overCp (asCp is defined by the same theofyas(C), it also holds ove€;.
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Step 2: Show thate is equivalent to ard®Vv* sentence ovef’, hence showing the
same oveC as well.

Note: The conditions irStep 1imply that for everyA € C, there existd) € C’ such
thatA = D. Then since compactness theorem holds Gyéralso holds ove€’.
Suppose the rank af is m. We defineC’ to be the set of graphG € C such that either
(a) there exists a bound; (dependent o) such that all paths ia" have length less
thanng (this does not mean thét is finite - there could be infinite paths of the same
length inG) or (b) there are atlea$B + m + 2) paths inG which are infinite in both
directions. It can be shown thét satisfies Property | (Se& below). We proceed
assuming this to be true.

Now, to showStep 2 we use the following approach.

Let P € ¢’ be s.t. P = ¢. Choose a cor¢ in P (recall thatp € PSC(B)). Let
Mp € Cj be arp—structure whose —reduct isP and in which each element &f

is assigned to some constant. [B¥* be the set of alt/* sentences true in/p. We
can show that ifM/’ € C); is such thatM’ | TMr, thenM’ = ¢ (SeeB below.
We proceed assuming this to be true). That is, if every finifesgucture ofM’ is
embeddable id/p, then)M’ |= ¢. Then ovelCl;, I'M» — ¢. Now, sinceC}; satisfies
compactness theorem, there exists a finite sub§et of TM* such that'y’* — ¢
overCl;. Note that, sinc&}’” is a conjunction of7* sentences, we can assume that
)" is a singlev* sentence.

Let ¢p be ther—sentence of the form”v* obtained by replacing th8 constants in
Fé”P by B fresh variables and existentially quantifying these \@da. Then check
thatop — ¢. Itis easy to see that — VPGC’,P\:qb ¢op (If P = ¢, then interpret the

3 quantifiers ing p as the chosen coté mentioned above). By compactness theorem
over(’, there exists a finite set of structures, §dy, - - - , P,,,} such thatP;, € C,

P, = ¢andgp — \/:Z|" ¢p,. Then, we have) <+ \/'_" ¢p, overC’. Since eachyp,

is of the form38v*, \/'Z(" ¢ p, is also of the same form. That completstep 2and
completes the proof.

Below we shall be referring to the notions of ‘ball type of iiah-’ (or simply »—ball
type), ‘disjoint unions’ (denoted byl) and ‘m-equivalence’ (denoted bs,,). We
shall also use Hanf’s theorem. The reader is referred toojghiese concepts.

A. (' satisfies Property |

Supposed € Cp. If there exists a bound 4, such that all paths id have length less
thann 4, thenA € C; and hence we are done. Contrarily, suppose that there ischo su
boundn 4. This means that either there are paths of arbitrarily lé&&ggths inA or
there is atleast one infinite pathih(Let us mark this inference as [*]). Now, construct
structureD € Cj;, whereD = AU | |"""* P, whereP is a path which is infinite in
both directions andl denotes disjoint union. We show that= D, by showing that
foreveryn € N, A =,, D. By Hanf's theorem [8], givem, there exist numbers
andq, dependent only on, such thatd =,, D if for each ball type¢ of radiusr, the
number of instances @fin A and D are either equal or are both are greater thay
adding(B + m + 2) paths, we are introducing infinite copies of just oneball type
£in D, namely the2r + 1 length path with the ball center as the midpoint. However,
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this type¢ was already present infinitely many timesAn(due to [*]). Hence Hanf's
condition holds for every typg, and thusA = D.

B. If M; € Clyis such thatV/; = T'M7 | thenlM; = ¢

Before, we proceed, we state and prove the following lemnedog an ‘outwardly’
(resp. ‘inwardly’) infinite path is an oriented infinite patlith an end point which has
an outgoing (resp. incoming) edge and no incoming (resainig) edge.

Lemma 13 For everym € N and structureG € C, there exists a substructueg™ C
G, such thatG™ =, G andG™ has

— atmost finitely many finite paths

— atmostm paths which are outwardly-infinite

— atmostm paths which are inwardly-infinite

— atmostl path which is bidirectionally-infinite

Proof: By Hanf’s Theorem, there exists, € N, such that any two paths of length
greater than,,, arem-equivalent. For any grapfi € C, define the following,

—fori € N, leta% be the number of length paths

— a? be the number of outwardly-infinite paths

— af be the number of inwardly-infinite paths

— a$ be the number of bidirectionally-infinite paths
GivenG, considelG™ C G given as,

—forie {0, ,tm}, af” = min(af, m)
o0
—af",, =min( tZH af’,m)
1=1lm

—fori > (ty, +1),af" =0

- a?m = min(af,m)

- afm = mln(af,m)

—af" = min(af, 1)

By Hanf’s theorem, it is easy to see tl@t* C G andG™ =,,, G. |

Suppose\; € Cj is such thaf\/; = I'M». To show that\/; = ¢, we show that there
exists a substructurkl, of Mp such thathy; =,, M- (recall thatP is a model ofg
and M p is the expansion oP with the elements of a chosen cofeas interpretations
of the B constants). Since € PSC(B), P |= ¢, and any substructure @ » would
contain the coreZ of P, we have that\ls | ¢. And sinceM; =,, M,, we would
haveM; = ¢.

Consider the partition al/p into two partshMp; andMp 2, whereM p; is substruc-
ture containing all those paths M » which contain the interpretation of atleast one
of the constants,,--- ,cg and Mpy contains all the paths in/p which are not in
Mp ;. Similarly, consider the partition ¥/, into A/, ; andM; 2. There are two cases
to consider.

Case 1 :There exists a boundp such that all paths in? (and M p) have length less
thannp
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Note that sinceM; = I'Mr, for every finite substructure a¥f;, there exists an iso-
morphic substructure af/p». And since all paths in/p have length less thanp,
we have that all paths in/; have length less thamp as well. Consider the substruc-
tureMIS = My UMy C M (whereM{’f2 is as defined in Lemma 13). Clearly,
Mls =,, M,. Moreover, since boti/; ; andM{’j2 are finite,Mls is finite, hence there
exists a substructur&/s C Mp, such thatMIS and M, are isomorphic. And since
M, = ¢ (see above for the reasoning), we ha/¢ = ¢ and hencell; = ¢ (since
M? =, M).

Case 2 :There are atleastB+m-+2) paths inM p which are infinite in both directions.
Consider a patlL in M; containing the interpretatian; of a constant;. SinceM; =
I'Mr  one can see th@tmust be a subpath of some pathlifp - infact subpath of some
path inMp ;. Thus, arguing similarly for each pathC M, 1, we havelM; ; C Mp ;.
Also, since there areB + m + 2) bidirectional-infinite paths id/p, atleast(m + 2)
of these would be present i p . Now, sinceM", C M > (as defined in Lemma
13) contains,

— finitely many finite paths - all of these can be embedded ingisibidirectional
infinite path

— atmostm outwardly-infinite and atmost inwardly-infinite paths - all of these
can be embedded in bidirectional-infinite paths

— atmostl bidirectional-infinite path : can be embedded in a singlérbadional-
infinite path.

it follows that M7, can be embedded intd/p 5. Thus,Mls = My, UM C
Mpy1 U Mpy = Mp. HenceMls E ¢. And sinceM{’j2 =,, M, we have
M? =, My, and hencé/; = ¢.

Thus, we have shown thatifl; € C; andM; = M7, thenM; = ¢. [ |

We now look at some classes of structures over which Theorfifs4

5 Theorem 4 fails over special classes of structures

We first look at the clasg of all finite structures. £os-Tarski theorem fails oversthi
class and hence so does Theorem 4 o= 0). However, we have the following
stronger result. We prove it for relational vocabulariemn@ants permitted).

Lemma 14 For relational vocabularies, Theorem 4 fails, ovgt for eachB > 0.

Proof: We refer to [1] for the counterexamplefor Los-Tarski in the finite. Let be
the vocabulary ofy (i.e. {<, S, a,b}) along with a unary predicat€. Let us call an
elementz as having colour 0 in a structurelf(x) is true in the structure and having
colour 1 otherwise. Lep be a sentence asserting that there are ex&cdiements hav-
ing colour 0 and these are different frarmandb. Then considep = —x A . Check
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that since—y is preserved under substructures in the finite, in any mode| the B
elements of colour O form a core of the model w.it. Theng € PSC(B). Suppose
¢ is equivalent tay) given by32zv"y 3 where is quantifier-free. Observe that in
any model ofp and), any witness for) must include all theB elements of colour 0
(else the substructure formed by the witness would not mpaeld hence, though it
would modekp). Consider the structur® = ({0,1,...,B +2n+ 3},<,S5,a,b,U)
where< is the usual linear order on numbefsjs the (full) successor relation &f,
=0,b = B+2n+3andU = {1,...,B}. Now M [~ ¢ sinceM [ —y.
ConsiderM; which is identical toM except thatS(B + n + 1,y) is false inM; for
all y. ThenM; E ¢ so thatM; | . Any witnessa for ¢» must include all the
B colour 0 elements ofif;. Then choose exactly the same value, nanagljrom
M to assign taz. Choose any asy from M. Check that it is possible to choode
asy from M, s.t. M(ab) is isomorphic toM; (ad) under the isomorphisnfi given
by f(0) = 0,f(B+2n+3) = B+ 2n+ 3, f(a;) = a; and f(b;) = d; where
a=(ay,...,ap), b= (by,...,b,) andd = (dy,...,d,). Then sinceM; |= §(a,d),
M = B(a,b). ThenM modelsy, and hence. But that is a contradiction. |

The example expressed kycan also be written as a sentence in a purely relational
vocabulary. The senteneebelow is over the vocabulary = {<,S5,U}. We leave
it to the reader to reason out (in the same manner as in [1f])}tiapreserved under
substructures in the finite but is not equivalent to any us&ksentence.

¢ = x1/xz2Axswhere

X1 = Vavyvz ((z<az) A ((<y)V(y<z)A
(z<y)n(y<z) = (z<2)
X2 = VavyS(z,y) — Vz(((:c )N (x#2)) = (y < 2))
Xz = FaVaVas (N2 -U(2) A (21 # 22)) = (xa(®1, 22, 2) V Xa (22, 21, 2))
Xa(r1,22,2) = Yy (271 <y)A(y < a2)A
E( y £ x1) Ay # 22)) = Uly) A

(z # 22) A 25(2,9)))
Then one can do a similar proof as above to show that for pueddgional vocabularies
too, for eachB > 0, Theorem 4 fails oveF.

So far, in all the cases we have seen, it has always been tedghzsTheorem 4 and
tos-Tarski theorem either are both true or are both false thén finally have the
following result which is our first instance of a class of stures over which.os-
Tarski theorem holds but Theorem 4 fails

Theorem 10 Over the clas€ of graphs in which each graph is a finite collection of
finite undirectedpaths, for eactB > 2, there is a sentencg € PSC(B) which is not
equivalent to any@”v* sentence. However, £os-Tarski theorem holds Gver

Proof: tos-Tarski theorem holds from the results of Dawar et wérdoounded degree
structures [2]. As a counterexample to Theorem 4B0F 2, consider conditiorD,

parametrized by3, which asserts that there are atleBspaths (0 length included) in
the graph. We show that this is FO definable because the fiolipequivalent condition
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Dy, parametrized by, is FO definable: (The number of nodes of degree §)<+(the
number of nodes of degree ) B. We briefly explain this equivalence betwefn
andD,. Consider a graph satisfying; . Let k& be the number of 0-length paths so that
there are atlead® — k paths of length> 1. Each of the latter paths has exactly 2 nodes
of degree 1. Then it is easy to check that conditienholds. Conversely, suppose
a graph satisfied,, but it has less tha® paths. Letk be the number of-length
paths so that there are atmdst- 1 — k paths of length> 1. Each of the latter paths
has exactly 2 nodes of degree 1. Then, (the number of nodesgoée 0) +§ x (the
number of nodes of degree 4) (k + 1 x 2 x (B — 1 — k)) < B — contradictingD; .
ThenD- implies D;.

Then, givenB, D, is expressible by a FO sentengsince D, is FO expressible (the
latter is easy to see).

To see that is in PSC(B), in any model, observe that the set of nodes formed by
picking up one end point each &f distinct paths is a core.

Now suppose thap is equivalent ove€ to v = 38z vy B(z, ) for somen € N
where is quantifier-free. Consider a graphf which has exactlyf £ | paths, each
of length> 5n (There is nothing sacrosanct about the number 5 - it is jUSt@ntly
large for our purposes). By definitiof] (= ¢ and hencé/ |~ «. Label the end points
of these paths gs;, p2, ps, . . ., p2.x Wherek = [g} Now consider a graplV having
exactly B paths, each of lengtlk 5n . By definition, N = ¢ and henceV = .
Then there exists a witnegs= (ay,...,ap) in N for ¢». Observe that no two of the
a;S can be in the same path else taking the substructukefofmed by just the paths
containinga, one would get a model af and hence - but the number of paths in this
model would be< B — 1, giving a contradiction. We now choose points. .., bp

in M as follows. Fori € {1,..., B}, if a; is at a distance of atmostfrom any end
point in N, then choosé; to be at the same distance frgmin M. Else chooseé;

to be at a distance of from p; in M. Assigningb = (b1, ...,bg) asz, choose any
d asy from M. Check that it is possible to choosesy from N s.t. M (bd) is iso-
morphic toN (ae) under the isomorphisnfi given by f(b;) = a;, f(d;) = e; where
d = (dy,...,d,) andé = (e1,...,e,). SinceN = B(a,é), M |= B(b,d). ThenM
modelsy — a contradiction. [ |

Important Note: For B = 2, the sentence above is equivalent to asserting that either
(i) there are atleagtnodes of degree exactly O or (ii) there are atl@asbtdes of degree
atmost 1. Consider the following condition fé& > 2 whose special case f@ = 2

is the condition just mentioned: Either (i) there are atidasodes of degree exactly 0

or (ii) there are atleadB + 1 nodes of degree atmost 1. This condition, for a gi¥en

is easily seen to be expressible as a FO sentéffizefact, ¢ is of the form3B+1y*),
Butfor B > 2,¢ ¢ PSC(B). To see this, consider a graplf containing exactl2
pathsP; and P, of length> 1 and B — 3 paths of length (the total number of paths

is then< B). We will show that)M has no core (w.r.t§) of size atmosiB. Firstly,

M = ¢ sinceM hasB + 1 nodes of degree atmost 1. dfe PSC(B), thenM has

a coreC of size atmostB. There are 2 cases: (a) Onelef or P, has atmost 1 core
element. (b) BothP, and P, have atleast 2 core elements. In case of (b), note that
atleast one of the 0-length paths will not contain any cogeneint. Then consider the
substructureM; of M without this path - this contains all core elements and hence
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must satisfy¢. However, there are exactly elements of degree atmost 1 id; and
henceM, violates¢. In case of (a), there are two subcases: (i) On&0br P, say
P, w.l.o.g., contains no core element. Then the substructéyeof M which is all
of M, but excludingP;, contains all core elements and must hence médsiut M;
contains exactly3 — 1 nodes of degree atmost 1; so it violategii) One of P, or P,
say P, w.l.0.g., contains exactly 1 core element saylLet M, be the substructure of
M without P;. Consider the disjoint unioi/; of M; and the substructur&/, of M
induced bya. ThenM3 C M contains all core elements and must hence médBut
M3 contains exacthy3 nodes of degree atmost 1; so it violates

In all cases, we have a contradiction. Hendehas no core of sizec B. Hence
£ ¢ PSC(B).

Interestingly however, Theorem 4 holds o¢efor B = 1 as we shall see in the next
Lemma. We also give a simpler proof for the casésof 0 i.e. Los-Tarski ove€.

Lemma 15 OverC, for B < 1, ¢ € PSC(B) iff ¢ is equivalent to) wherey =
3B% Vg ¢|zy for somen € N,

Proof: Let the quantifier rank o bem. By Hanf’s theorem, we have the following:

A There exists a numbey, € N such that any two undirected paths of length greater
thant,, arem—equivalent.

B There exists a numbey,, € N such that given a structurté = (P, a) whereP € C
is (finite) path of length greater than), anda is a designated element &f, there
is a substructuré&’; = (P, a) of G s.t. (i) P, is a subpath of? containing the
designated elemeant (i) | P1| < s,, and (i) G =,,, G;.

C For any graptG € C, leta$ be the number of undirected paths of lengih G.
Now, given graph € C, we consider a grapf™ C G as follows (similar to the
method in the proof of Theorem 9):

—fori e {O7 - ’tm}, aiGm = min(aﬁm)
%)
—af "y = min( tZH af’,m)
i=ty,

—fori > (ty, 4+ 1),af" =0

By Hanf’s theorem, it is easy to verify th&t™ =,,, G.

Now consider the statement of the (current) lemmaffor= 1. Letn = s, +
i=tm+1
> (m- (i + 1)) and consider) given byy = 3x Vg ¢|,5. Thaty — o fol-
i=0

lows from Lemma 5. For the converse, suppGse- ¢. Leta be a witness and Il
be the path irG on whicha appears. Consider the vocabulary= { E} U {c¢; } where
c¢1 Is a fresh constant and considge (G, a) - ther; -structure obtained by expanding
G with a as the interpretation far,. LetG = G, U Gy whereG; = (P, a) andGs € C

is the collection of all paths it other thanP. Note that we have abused thenotation
slightly but the idea of separating anda from the rest of is clear. Now,
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— Let G{ C G be the structure ensured by [B] above. Then@)| < s,, and (ii)
gi =m gl-
1=ty +1

— Let G be as given by [C] above. Then (5" C Go, (i) |GF'| < > m-(i+1)
=0
and (iii) GJ* =,,, Ga.

Theng’' = (G; UGY) =,, (G1 UG2) = G. AlsoG’ C G. Note that|G’| < s, +
i=tpy+1 _ _
> m-(i+ 1) =n. Now sinceG [ v, chooser = a andy = d whered is any
1=0
tuple containing exactly the elements@f- this is possible sincg’| < n as we just
saw. ThenG, a,d) = ¢|z5 so thatG’ |= ¢. ThenG = ¢ and hence? |= ¢.
For B = 0, there is naG; and hence ng;. Itis easy to see that the same proof goes
through. |

6 Additional observations on tas-Tarski theorem over
the class of all finite structures

We will refer to truth or failure of £os-Tarski over the cta®f all finite structures
simply as the truth or failure of Los-Tarski ‘in the finite’.

Now as observed earlier in Sections 4 and 5, while Los-Téadk in the finite, there

are special fragments of FO for which Los-Tarskitige in the finite. We present
below two additional fragments of FO for which tos-Tarskitiue in the finite. This

would follow from their combinatorial proofs and hence watstthe results below for
arbitrary structures.

Lemma 16 Consider¢ of the form3aVyy(x,y) in a purely relational vocabulary
7. If € PS, theng is equivalent top = Vz1...Vz,¢|(,,, .. Wheren = 2/7I.
Further, this bound is tight i.e. there is% sentence irP.S which is not equivalent to
a universal sentence with less thamuantifiers.

Proof:

From Lemma 5, it follows that i/ = ¢ thenM = . Therefore to prove the lemma,
it suffices to show that i/ |= ¢, that is, every substructure 8f with size atmost

n is a model ofp, then infactM | ¢. We prove it by contradiction, so assume that
M = ¢ A —¢. The main idea is to usk/ to come up with a structure which models
but which has a substructure which is a non-model.ofhis contradicts that € PS.
[Note that|A/| > n for such anM, since if M| < nandM |= ¢ thenM | ¢ as
well.]

Since every substructure 8f with size atmost. modelse, every1 sized substructure
of M is a model ofg, and hence)(x, x) is true for everyx € M (recall thatp =
3y (z, y)). Now note that, = 2!7!'is the number of all-types possible over the
vocabularyr upto equivalence (Airtypeof 7 is a quantifier-free formula overwhich
uses just variables. The number aftypes is finite upto equivalence. See [8] where
ouri-type is calledrank-0,i-typg). Denote thel-types as{oq, - , 0,1}, ando;(x)
denotes that is of 1-typeo;. Suppose that there exists an elemanof 1-typeos; in
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M. SinceM | Va3y—(z,y), there exists @, such that)(zo, yo) is false inM.
However, since every substructure of size atmo& a model of¢, the substructure
M({z0,y0}) = ¢ and hence)(yo, z¢) must be true inV/ (since either: or yo must
act as a witness far in ¢. But ¢ (xg,yo) is false. Hence:, cannot be the witness).
Letyo be of1-typeoy.

Suppose that it is possible to have a structdreith just two elementgag, a1 } such
thato;(ag), o;(a1) and—(ap, a1) hold. Then consider the structuie with universe
{ao, a1, a2, b} such that (i)o; (a;) holds forj € {0, 1, 2} (ii) o« (b) holds

(iiiy =(aj, a(j+1)mod3) holdsforj € {0, 1,2} (iv) ¥ (b, a;) holds forj € {0, 1,2} and
(V) ¥(b,b). Such a structure exists because all the 1-types and 21tgvedeeropied
from other structures, namely, (i), (iii) are copied from #d«(ii), (iv), (v) copied from
M. Clearly, X E ¢, sinceb € X acts as a witness farin ¢. However, the substructure
of X induced by{ay, a1, a2} £ ¢. This contradicts the given assumptiorgo& PS.
Hence, it is not possible to have a structdras assumed, and hence taking a structure
A’ with two elementsi, a; such that; (ao), o;(a1) hold, necessitates thét ag, a1 )
must hold (Note that for everi+typeo; in M, one can construct such atj).
ConsiderM’ to be a substructure dff which contains exactly one element of edeh
type presentin\/. Clearly|M’| < n and hencel/’ = ¢. Thus, there exists; € M’
such that for every, € M’, ¥ (x1,y1) holds. Suppose that () holds. Construct
an extensionV/ of M with an additional element, such that (i)o;(z) holds (ii)
Yy € M 1)(z0,y) holds (iii) ¥(20, z0) holds. Such a structuré®l exists because all the
1-types and 2-types have beswpiedfrom other structures, namely (i), (iii) are copied
from M, (ii) is copied fromM for y satisfying—o;(y), and fory satisfyingo;(y), the
2-type is copied fromi;. Clearly, M = ¢ aszy € M acts a witness far in ¢. How-
ever,M C M andM b& ¢. This again contradicts that € P.S. Hence, our original
assumption that there exist$ such thatM = ¢ A —¢ is incorrect. Thep — ¢.

To prove the optimality of the bound, consider the followigxample over a vocab-
ulary of k unary predicates. We construct a formdlasuch that the smallest for
which ¢ > V21 ---Vz,é|(., .. 2,y IS infactn = 2%, Suppose for contradiction
thatg <> Vzi...Vzuip. Then by Lemma 4¢ < Vzy - V2 1dlqz, .. 2, .- LEL
{00, ,0n-1} be the set of all -types.

Define¢ = Javy /\ (oi(x) = —0(i+1) modn(y)). Itis easy to check that the se-

mantic mterpretauon op implies thatM E ¢ if and only if there exists atleast one
1-type o; which is not present inA/. Now consider the structurg/ which has ex-
actly one copy of eacli-typeo;. Clearly, in every substructure aff which has size
less than or equal ta — 1, there exists atleast orletype which is missing. Hence
M = V2 V2 19|, 2,y HOwever,M = ¢ as alll-types are present if/.
This is a contradiction. Henag ¢ Vz; ---Vz,_19¢[(2, ..., ,},» and thus, the bound
n = 27l is optimal. [ |

Lemma 17 Letr be a purely relational vocabulary anglbe a sentence if'O(r) s.t
() ¢ = 3y ... Fzp Yy (2, . .., 2, y) Wherey is quantifier free and nd variable
is compared with & variable using equality (iiyp € PS. Theng is equivalent to
@ =Vz1...Y2,0| (s, ..y Wheren is 217,
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Proof:

From Lemma 5, we have — . Therefore to prove the lemma, it suffices to show
that if M | ¢, that is, every substructure 8f with size atmost: is a model ofg,
then infactM |= ¢. We prove it by contradiction, so assume thatE= ¢ A —¢. The
main idea is to usé/ to come up with a structure which modelsbut which has a
substructure which is a non-model ¢f This contradicts that € PS. [Note that
|M| > n, since if|M| <nandM |= ¢ thenM |= ¢ as well.]

ConsiderM’ to be a substructure gf/ which contains exactly one element of each
1-type present ilM/. Clearly |[M’| < n and henceM’ = ¢. Thus, there exists

a1, - ,ar € M'suchthatforevery € M',+(ay,--- ,ax,b) holds. Construct an ex-
tensionM of M with k additional element$§zy, - - - | ;. } such that (W ({z1,- - - , 2z })
is isomorphic toM’({a1,- - - , a;}) via the isomorphisnf (z;) = a;

(i) Yy € M 9(z1,---,21,y) holds. Such a structur®/ exists because al-types

(r < k + 1) have been obtained lmopyingpredicate values from other structures as
now explained. The types in (i) are copied frawi. The types in (ii) are copied as
they are fromM’ as follows: supposg, € M’ has the samé-type asy € M, then
r-type {z1, -, zx,y} in M (wherer is the number of distinct elements present in
{z1,--, 2k, y}) is obtained by having all propositional statement&;1, - - - , zx, y)

to have the same value W asa(ay,--- ,ay, yo) in M’, where there is no equality
betweeny and z; in a. Then, (21, , 2k, y0) is true in M, asy (a1, ,ak, yo)

is true inM'. Also, since there are no equality comparisons betwgeamdy in ¢,
¥(z1,- -+, zk,y) has the same value a@gaq,--- ,ax,yo), €ven ify, was infact one
of the a;s itself. Thus, we havé! = ¢ aszi,---,z; € M act as witnesses for
x1,---,r; in ¢. However,M C M andM  ¢. This contradicts thap € PS.
Hence, our original assumption that there exigtsuch that\/ = ¢ A —¢ is incorrect.
Theny — ¢. |

We now make the following important observation given owutts. Over the class of
all finite structures and for purely relational vocabulayide following hold:

1. tos-Tarski holds trivially for thes? andII{ fragments of FO. A} sentence in
PS is actuallyvalid. There is nothing to do in thH? case.

2. By Lemma 8, tos-Tarski holds fais.

3. The counterexample to tos-Tarski in the finite, given asiely relational sen-
tence¢ after Lemma 14 in Section 5, is av* sentence. Then tos-Tarski fails
in the finite for) andII) for all k > 3.

4. By Lemmas 16 and 17, for thév fragment (with equality) ob29 and the3*Vv
fragment (with restricted equality) 619, tos-Tarski holds.

This then leaves open only the following cases to invesiffatt 05-Tarski in the finite
for purely relational vocabularies.

1. Full3*V fragment (in particular, the ‘with-equality’ case)

2. IV
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3. 38
4. 3v* without equality

Any resolution of all these cases would give a complete dtaraationof the dividing
line in the class of prefix fragments of FO, over purely relal vocabularies, between
those prefix fragments for which £os-Tarski holds in thetérand those for which it
does not!

We are currently trying to see if Lemmas 16 and 17 go throughdiational vocabu-
laries too (constants permitted). If so, then observingttiacounterexamplg men-
tioned in the proof of Lemma 14 is 3> sentence, the only cases left to investigate
would be the above cases of (1) and (2) and finally2tt&fragment without equality.
With any resolution of these cases, we would get a completeackerization of the di-
viding line in the class of prefix fragments of FO, over ralatil vocabularies, between
those prefix fragments for which £os-Tarski holds in thetéirand those for which it
does not.

7 Proof of Theorem 4

We first introduce some notations. Given a vocabulgryve denote by, the vo-
cabulary obtained by expandingwith k-fresh constants, say, ..., c,. Given ar-
structureM andk elementsh, ..., b, from M, we denote by(M, by, ..., bx), the
Ti-Structure whose-reduct isM and in which the constant is interpreted as; for
1 < i < k. Finally, for ar-structureM, we denote byM|, the power ofM, i.e. the
cardinality of the universe af/.

We begin with the following definition.

Definition 3 (k-cover) Given ar-structure M, we call a setK of r-structures as a
k-coverof M if (i) N C M for eachN € K (ii) the union of the universes of the
elements of( is the universe of\/ and (iii) for every atmosk-sized subse$' of the
universe ofM, there exists an element &f containingS. We callM as theunion of
K and denotéVf as|J K.

Note that givenM, there always exists A-cover of it - choose the sdt” above as
{M}.

Definition 4 (Preservation undek-covers) AFO(7)-sentencey is said to be pre-
served undek-covers, if for all r-structuresM and all k-coversK of M, if every
structure inK satisfiesp, thenM satisfiesp.

We will assume familiarity with the notion of saturationssdgbed in [5] and recall
now the following theorems from [5] which we will use subseqtly.

Proposition 1 (A special case of Proposition 5.1.1(iii) in [5]) Given arfiimte cardi-
nal A and a\-saturated structuré/, for everyk-tuple (a1, ..., a)) of elements from
M wherek € N, (M, aq,...,ax) is also-saturated.
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Proposition 2 (Proposition 5.1.2(ii) in [5]) M is finite iff M is A—saturated for all
cardinals\.

Theorem 11 (A special case of Lemma5.1.4in [5]) Lebe a finite vocabulary) be
an infinite cardinal and\/ be ar-structure such that: < |M| < 2*. Then there is a
[B-saturated elementary extensiondffor 5 > .

Theorem 12 (Lemma 5.2.1 in [5]) Givenr-structuresM and N and a cardinal),
suppose that (i) is A\-saturated (ii)\ > |N| and (iii) every existential sentence true
in N is also true inM. ThenN is embeddable ii/.

Putting Theorem 11 and Proposition 2 together we get thevialg.

Corollary 3 For everyr—structure M, there exists &-saturated elementary exten-
sion of M for some cardinaB > w.

Towards our syntactic characterization, we first prove ttiewing.

Lemma 18 Given a finite vocabulary, consider aF'O(r)-sentences which is pre-
served undek-covers and let” be the set of alt*3* consequences a@f Then for all
infinite cardinals), for every\-saturated structurd/, if M =T, thenM |= ¢.

Proof:

If ¢ is either unsatisfiable or valid, then the result is immediat

Else, considedV satisfying the assumptions above. To show thatE ¢, it suf-
fices to show that for every atmoktsized subseb of the universe of\/, there is
a substructure\/, of M containingS such thatM, models¢. Then the setk =
{M;|S is an atmosk-sized subset of the universe offMorms ak-cover of M. Fur-
ther sincep is preserved undér-covers,M = ¢.

Letay,...,ar be the elements of a subsgf the universe of\/. To show the exis-
tence of)M, it suffices to show that there existsyastructureN s.t. (i) NV is of power
atmost\ (ii) every 3* sentence true itV is also true in(M, aq, ..., ax) (i) N E ¢.
Since M is \-saturated, by Proposition 1), a4, ..., a) is also\-saturated. Then
from Theorem 12N is embeddable int¢M, a1, ...,ax). Then ther-reduct of the
copy of N in (M, ay,...,a;) can be taken to b&/, referred to above.

We now show the existence &f to complete the proof.

Let P be the set of al* sentences of'O(7;) which are true in(M,aq,...,ax).
Consider the seT’ = {¢} U P. Supposel’ is unsatisfiable. Then by Compactness
theorem, there is a finite subset Bfwhich is unsatisfiable. Sinc® is closed un-
der taking finite conjunctions and since eachfofind ¢ is satisfiable, there exists a
sentence) in P s.t. {¢,v} is unsatisfiable. Them — —¢. Now ¢ is a FO(7)
sentence while) is a FO(ry;) sentence. Then by-introduction,¢ — ¢ where
o = Vay .. Vaep—ler — 21;...50 — x] wherexq, ..., xy arek fresh variables
andc; — x; denotes replacement of by x;. Now note that since is aV* sentence,
—) is a3* sentence (iFFO(7;)) and hencep is av*3* sentence (i"O(7)). Then
¢ € I'so thatM |= ¢. Then(M,aq,...,ax) = —. This contradicts the fact that
P e P.
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ThenT is satisfiable. By Lowenheim-Skolem theorem, there is aehdd of T' of

power atmosi. SinceN models every/* sentence true (M, aq, . . ., ax), it follows
that everyd* sentence true itV is true in(M, aq, ..., ax). Finally, sinceN = ¢, N
is indeed as desired. [ |

Theorem 13 Given a finite vocabulary, a FO(7)-sentencep is preserved undek-
covers iff it is equivalent to &*3* sentence.

Proof:

LetI" be the set of al*3* consequences &f. It is easy to see that — I'. For the
converse direction, suppodé = I'. By Corollary 3, there is 8—saturated elementary
extensionV/ ™ of M for some3 > w. ThenM ™ |= . Then from Lemma 18, it follows
that M T = ¢. SinceM ™ is elementarily equivalent td/, we have that\/ = ¢.
Thenl” — ¢ and hences <> I'. By Compactness theorem,is equivalent to a finite
conjunction of sentences f Sincel is closed under finite conjunctionsjs equiva-
lent to av*3* sentence. [ |

We now prove Theorem 4.

Theorem 4 Given a finite vocabulary, a FO(7) sentencep is in PSC(B) iff it is
equivalent to a”v* sentence.

Proof: We infer from Theorem 13 the following equivalences.

¢ is equivalent to @®v* sentence iff

—¢ is equivalent to &”3* sentence iff

For all7-structures\f and allB-coversK of M, if VN € K, N = —¢, thenM |= —¢
iff

For all 7-structures\/ and all B-coversK of M, if M = ¢thendN € K, N | ¢

Assume¢ € PSC(B). SupposeK is a B-cover of M and thatM = ¢. Since
¢ € PSC(B), there exists a cor€ of M of size atmostB. Then by definition of
B-cover, there exist&V € K s.t. (i) N containsC and (i) N C M. Then sinceC”

is a core ofM, N = ¢ by definition of PSC(B). Then by the equivalences shown
above ¢ is equivalent to &”v* sentence. It is easy to see that#fiv* sentence is in
PSC(B). |

8 Conclusion and Future Work

For future work, we would like to investigate cases for whicimbinatorial proofs of
Theorem 4 can be obtained. This would potentially improveumderstanding of the
conditions under which combinatorial proofs can be obtfioe the £05-Tarski theo-
rem as well. An important direction of future work is to intigatte whether Theorem 4
holds for important classes of finite structures for whiahitles-Tarski theorem holds.
Examples of such classes include those considered by Assetial. in [2]. We have
also partially investigated how preservation theoremstmmnised to show FO inex-
pressibility for many typical examples (see [12]). We wolike to pursue this line of
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work as well in future.
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