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Abstract

We investigate a model-theoretic property that generalizes the classical notion of
“preservation under substructures”. We call this propertypreservation under sub-
structures modulo bounded cores, and present a syntactic characterization viaΣ

0

2

sentences for properties of arbitrary structures definableby FO sentences. As a
sharper characterization, we further show that the count ofexistential quantifiers
in theΣ0

2 sentence equals the size of the smallest bounded core. We also present
our results on the sharper characterization for special fragments of FO and also
over special classes of structures. We present a (not FO-definable) class of finite
structures for which the sharper characterization fails, but for which the classi-
cal Łoś-Tarski preservation theorem holds. As a fallout ofour studies, we obtain
combinatorial proofs of the Łoś-Tarski theorem for some ofthe aforementioned
cases.

Keywords: Model theory, First Order logic, Łoś-Tarski preservation theorem

1 Introduction

Preservation theorems have traditionally been an important area of study in model the-
ory. These theorems provide syntactic characterizations of semantic properties that
are preserved under model-theoretic operations. One of theearliest preservation the-
orems is the Łoś-Tarski theorem, which states that over arbitrary structures, a First
Order (FO) sentence is preserved under taking substructures iff it is equivalent to a
Π0

1 sentence [5]. Subsequently many other preservation theorems were studied, e.g.
preservation under unions of chains, homomorphisms, direct products, etc. With the
advent of finite model theory, the question of whether these theorems hold over finite
structures became interesting. It turned out that several preservation theorems fail in
the finite [1, 7, 9]. This inspired research on preservation theorems over special classes
of finite structures, e.g. those with bounded degree, bounded treewidth etc. These ef-
forts eventually led to some preservation theorems being “recovered” [2, 3]. Among
the theorems whose status over the class of all finite structures was open for long was
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the homomorphism preservation theorem. This was recently resolved in [10], which
showed that the theorem survives in the finite.
In this paper, we look at a generalization of the ‘preservation under substructures’ prop-
erty that we callpreservation under substructures modulo bounded cores. In Section 2,
we show that for FO sentences, this property has a syntactic characterization in terms
of Σ0

2 sentences over arbitrary structures. As a sharper characterization, we state our
result (but provide the proof later in Section 7) that for core sizes bounded by a number
B, there is a syntactic characterization in terms ofΣ0

2 sentences that use atmostB exis-
tential quantifiers. In Section 3, we discuss how the notion of relativizationcan be used
to prove the sharper characterization in special cases and also discuss its limitations.
We present our studies for special classes of FO and over special classes of structures
in Sections 4 and 5. As a fallout of our studies, we obtain combinatorial proofs of the
classical Łoś-Tarski theorem for some of the aforesaid special cases, and also obtain
semantic characterizations of natural subclasses of the∆0

2 fragment of FO. In Section
7, we provide the proof of the sharper characterization using tools from classical model
theory and some notions that we define. We conclude with questions for future work
in Section 8.
We assume that the reader is familiar with standard notationand terminology used in
the syntax and semantics of FO (see [8]). Avocabularyτ is a set of predicate, function
and constant symbols. In this paper, we will restrict ourselves to finite vocabularies
only. A relational vocabularyhas only predicate and constant symbols, and apurely
relational vocabularyhas only predicate symbols. We denote byFO(τ), the set of all
FO formulae over vocabularyτ . A sequence(x1, . . . , xk) of variables is denoted by
x̄. We will abbreviate a block of quantifiers of the formQx1 . . . Qxk by Qx̄, where
Q ∈ {∀, ∃}. By Σ0

k (resp. Π0
k), we mean FO sentences in Prenex Normal Form

(PNF) over an arbitrary vocabulary, whose quantifier prefix begins with a∃ (resp.∀)
and consists ofk − 1 alternations of quantifiers. We use the standard notions ofτ -
structures, substructures and extensions, as in [8]. Givenτ−structuresM andN , we
denote byM ⊆ N thatM is a substructure ofN (orN is an extension ofM ). Given
M and a subsetS (resp. a tuplēa of elements) of its universe, we denote byM(S)
(resp.M(ā)) the smallest substructure (under set inclusion ordering of the universe) of
M containingS (resp. underlying set of̄a) and call it the substructure ofM induced
by S (resp. underlying set of̄a). Finally, by sizeof M , we mean the cardinality of
its universe and denote it by|M |. As a final note of convention, whenever we talk
of FO definability in the paper, we mean definability via FO sentences (as opposed to
theories), unless stated otherwise.

2 Preservation under substructures modulo cores

We denote byPS the collection of all classes of structures, in any vocabulary, which
are closed under taking substructures. This includes classes which are not definable in
any logic. We letPS denote the collection of FO definable classes inPS. We identify
classes inPS with their defining FO sentences and will henceforth treatPS as a set of
sentences. We now consider a natural generalization of thePS property. Our discussion
will concern arbitrary (finite) vocabularies and arbitrarystructures over them.
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2.1 The case of finite cores

Definition 1 (Preservation under substructures modulo finite cores)
A class of structuresS is said to bepreserved under substructures modulo a finite core
(denotedS ∈ PSCf ), if for every structureM ∈ S, there exists a finite subsetC of
elements ofM such that ifM1 ⊆ M andM1 containsC, thenM1 ∈ S. The setC is
called acore ofM w.r.t. S. If S is clear from context, we will callC as acore ofM .

Note that any finite subset of the universe ofM containing a core is also a core ofM .
Also, there can be multiple cores ofM having the same size. Aminimalcore ofM is
a core, no subset of which is a core ofM .
We will usePSCf to denote the collection of all classes preserved under substructures
modulo a finite core. Similarly, we will usePSCf to denote the collection of FO defin-
able classes inPSCf . We identify classes inPSCf with their defining FO sentences,
and will henceforth treatPSCf as a set of sentences.

Example 1: LetS be the class of all graphs containing cycles. For any graph inS, the
vertices of any cycle is a core of the graph. ThusS ∈ PSCf .

Note thatPS ⊆ PSCf since for any class inPS and for any structure in the class, any
element is a core. However it is easy to check thatS in above example is not inPS; so
PSCf strictly generalizesPS. Further, the FO inexpressibility ofS shows thatPSCf

contains classes not definable in FO.

Example 2: Considerφ = ∃x∀yE(x, y). In any graph satisfyingφ, any witness forx
is a core of the graph. Thusφ ∈ PSCf . In fact, one can put a uniform bound of 1 on
the minimal core size for all models ofφ.

Again it is easy to see thatPS ( PSCf . Specifically, the sentenceφ in Example 2 is
not inPS. This is because a directed graph with exactly two nodesa andb, and having
all directed edges except the self loop ona modelsφ but the subgraph induced bya
does not modelφ. HencePS ( PSCf . Extending the example above, one can show
that for any sentenceϕ in Σ0

2, in any model ofϕ, any witness for the∃ quantifiers in
ϕ forms a core of the model. HenceΣ0

2 ⊆ PSCf . In fact, for any sentence inΣ0
2,

the number of∃ quantifiers serves as a uniform bound on the minimal core sizefor
all models. Surprisingly, even for an arbitraryφ ∈ PSCf , it is possible to bound the
minimal core size for all models!
Towards the result, we use the notions ofchainandunion of chainfrom the literature.
The reader is referred to [5] for the definitions. We denote a chain asM1 ⊆M2 ⊆ . . .
and its union as

⋃

i≥0Mi. We say that a sentenceφ is preserved under unions of chains
if for every chain of models ofφ, the union of the chain is also a model ofφ. We now
recall the following characterization theorem from the ’60s [5].

Theorem 1 (Chang-Łoś-Suszko) A sentenceφ is preserved under unions of chains iff
it is equivalent to aΠ0

2 sentence.

Now we have the following theorem.

Theorem 2 A sentenceφ ∈ PSCf iff φ is equivalent to aΣ0
2 sentence.
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Proof: We infer from Theorem 1 the following equivalences.
φ is equivalent to aΣ2

0 sentence iff
¬φ is equivalent to aΠ2

0 sentence iff
∀M1,M2, . . . ((M1 ⊆ M2 ⊆ . . .) ∧ (M =

⋃

i≥1Mi) ∧ ∀i(Mi |= ¬φ)) → M |= ¬φ
iff
∀M1,M2, . . . ((M1 ⊆M2 ⊆ . . .) ∧ (M =

⋃

i≥1Mi) ∧ (M |= φ)) → ∃i(Mi |= φ)

Assumeφ ∈ PSCf . SupposeM1 ⊆ M2 ⊆ . . . is a chain,M =
⋃

i≥0Mi and
M |= φ. Then, there exists a finite coreC of M . For anya ∈ C, there exists an
ordinal ia s.t. a ∈ Mia (elsea would not be in the unionM ). SinceC is finite, let
i = max(ia| a ∈ C). Sinceia ≤ i, we haveMia ⊆ Mi; hencea ∈ Mi for all a ∈ C.
ThusMi containsC. SinceC is a core ofM andMi ⊆ M , Mi |= φ by definition of
PSCf . By the equivalences shown above,φ is equivalent to aΣ0

2 sentence. We have
seen earlier thatΣ0

2 ⊆ PSCf .

Corollary 1 If φ ∈ PSCf , there existsB ∈ N such that every model ofφ has a core
of size atmostB.

Proof: TakeB to be the number of∃ quantifiers in the equivalentΣ0
2 sentence.

Given Corollary 1, it is natural to ask ifB is computable. In this context, the following
recent unpublished result by Rossman [11] is relevant. Let|φ| denote the size ofφ.

Theorem 3 (Rossman) There is no recursive functionf : N → N such that ifφ ∈ PS,
then there is an equivalentΠ0

1 sentence of size atmostf(|φ|). The result holds even for
relational vocabularies and further even ifPS is replaced withPS ∩ Σ0

2.

Corollary 2 There is no recursive functionf : N → N such that ifφ ∈ PS, then there
is an equivalentΠ0

1 sentence with atmostf(|φ|) universal variables. The result holds
even for relational vocabularies and further even ifPS is replaced withPS ∩ Σ0

2.

Proof: Let ϕ = ∀nz̄ψ(z̄) be aΠ0
1 sentence equivalent toφ wheren = f(|φ|). Let

k be the number of atomic formulae inψ. Sinceφ andψ have the same vocabulary,
k ∈ O(|φ| · n|φ|). The size of the Disjunctive Normal Form ofψ is therefore bounded
above byO(k · n · 2k). Hence|ϕ| is a recursive function of|φ| if f is recursive.

Theorem 3 strengthens the non-elementary lower bound givenin [6]. Corollary 2 gives
us the following.

Lemma 1 There is no recursive functionf : N → N s.t. if φ ∈ PSCf , then every
model ofφ has a core of size atmostf(|φ|).

Proof: Consider such a functionf . For any sentenceφ in a relational vocabulary
τ s.t. φ ∈ PS, ¬φ is equivalent to aΣ0

1 sentence by Łoś-Tarski theorem. Hence
¬φ ∈ PSCf . By assumption aboutf , the size of minimal models of¬φ is bounded
above byn = f(|φ|) + k, wherek is the number of constants inτ . Therefore,¬φ
is equivalent to an∃n sentence and henceφ is equivalent to a∀n sentence. Corollary
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2 now forbidsn, and hencef , from being recursive. It is easy to see that the result
extends to vocabularies with functions too (by using functions in a trivial way).

Corollary 1 motivates us to consider sentences with boundedcores since all sentences
in PSCf have bounded cores.

2.2 The case of bounded cores

We first give a more general definition.

Definition 2 (Preservation under substructures modulo a bounded core) A class of
structuresS is said to bepreserved under substructures modulo a bounded core(de-
notedS ∈ PSC), if S ∈ PSCf and there exists a finite cardinalB dependent only on
S such that every structure inS has a core of size atmostB.

The collection of all such classes is denoted byPSC. LetPSC(B) be the sub-collection
of PSC in which each class has minimal core sizes bounded byB. ThenPSC =
⋃

B≥0 PSC(B). An easy observation is thatPSC(i) ⊆ PSC(j) for i ≤ j. As before,
PSC and eachPSC(B) contain non-FO definable classes. As an example, the class of
forests is inPSC(0). Let PSC (resp.PSC(B)) be the FO definable classes inPSC
(resp.PSC(B)). Observe thatPSC(0) is exactlyPS andPSC =

⋃

B≥0 PSC(B).
Therefore,PSC generalizesPS. Further, the hierarchy inPSC is strict. Consider
φ ∈ PSC(k) given byφ = ∃x1 . . . ∃xk

∧

1≤i<j≤k ¬(xi = xj). Thenφ /∈ PSC(l)
for l < k. From Corollary 1, we have

Lemma 2 PSC = PSCf .

As noted earlier, aΣ0
2 sentenceφ with B existential quantifiers is inPSCf with mini-

mal core size bounded byB. Henceφ ∈ PSC(B). In the converse direction, Theorem
2 and Lemma 2 together imply that for a sentenceφ ∈ PSC(B), there is an equivalent
Σ0

2 sentence. We can then ask the following sharper question: For φ ∈ PSC(B), is
there an equivalentΣ0

2 sentence havingB existential quantifiers?

Theorem 4 A sentenceφ ∈ PSC(B) iff it is equivalent to aΣ0
2 sentence withB

existential quantifiers.

The proof of this theorem uses tools from classical model theory and some notions that
we define. We will present it in Section 7. Before that we shallconsider Theorem 4
for special fragments of FO and for special classes of structures. Towards this, we first
look at the notion of relativization from the literature.

3 Revisiting Relativization

For purposes of our discussion in this and remaining sections of the paper, we will
assume relational vocabularies (predicates and constants).
A notion that has proved immensely helpful in proving most ofour positive special
cases of Theorem 4 is that ofrelativization. Informally speaking, given a sentenceφ,
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we would like to define a formula (with free variablesx̄) which asserts thatφ is true
in the submodel induced bȳx. The following lemma shows the existence of such a
formula.

Lemma 3 If τ is a relational vocabulary, for everyFO(τ) sentenceφ and variables
x̄ = (x1, . . . , xk), there exists aquantifier-freeformulaφ|x̄ with free variables̄x such
that the following holds: LetM be a model and̄a = (a1, . . . , ak) be a sequence of
elements ofM . Then

(M,a1, . . . , ak) |= φ|x̄ iff M({a1, . . . , ak}) |= φ

Proof: Let X = {x1, . . . , xk} andC be the set of constants inτ . First replace
every ∀ quantifier inφ by ¬∃. Then replace every subformula ofφ of the form
∃xχ(x, y1, . . . , yk) by

∨

z∈X∪C χ(z, y1, . . . , yk).

We refer toφ|x̄ as ‘φ relativized tox̄’. We shall sometimes denoteφ|x̄ asφ|{x1,...,xk}

(thoughx̄ is a sequence and{x1, . . . , xk} is a set).
We refer toφ|x̄ as ‘φ relativized tox̄’. For clarity of exposition, we will abuse notation
and useφ|{x1,...,xk} to denoteφ|x̄ (althoughx̄ is a sequence and{x1, . . . , xk} is a set),
whenever convenient.
We begin with the following observation.

Lemma 4 Over any given classC of structures inPS, if φ↔ ∀z1 . . . ∀znϕ whereϕ is
quantifier-free, thenφ↔ ψ whereψ = ∀z1 . . .∀znφ|{z1,...,zn}.

Proof: It is easy to see thatφ → ψ. Let M ∈ C be s.t. M |= ψ. Let ā be an
n−tuple fromM . Then, by Lemma 3,M(ā) |= φ. SinceC ∈ PS, M(ā) ∈ C
so thatM(ā) |= ∀z1 . . .∀znϕ. ThenM(ā) |= ϕ(ā) and henceM |= ϕ(ā). Then
M |= ∀z1 . . . ∀znϕ and henceM |= φ.

Using Łoś-Tarski theorem and the above lemma, it follows that a sentenceφ in PS
has an equivalent universal sentence whose matrix isφ itself relativized to the univer-
sal variables. However we give a proof of this latter fact directly using relativization,
and hence an alternate proof of the Łoś-Tarski theorem. We emphasize that our proof
works only for relational vocabularies (Łoś-Tarski is known to hold for arbitrary vo-
cabularies). This would show that relativization helps us prove Theorem 4 for the case
of B = 0.

3.1 A proof of Łoś-Tarski theorem using relativization

We first introduce some notation. Given aτ−structureM , we denote byτM , the
vocabulary obtained by expandingτ with as many constant symbols as the elements of
M - one constant per element. We denote byM theτM structure whoseτ−reduct is
M and in which each constant inτM is interpreted as the element ofM corresponding
to the constant. It is clear thatM uniquely determinesM. Finally,D(M) denotes the
diagramof M - the collection of quantifier freeτM−sentences true inM.
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Theorem 5 (Łoś-Tarski) A FO sentenceφ is in PS iff there exists ann ∈ N such that
φ is equivalent to∀z1 . . . ∀znφ|{z1,...,zn}.

Proof:
Consider a set of sentencesΓ = {ξk | k ∈ N, ξk = ∀z1 . . . ∀zkφ|{z1,...,zk}}. Observe
thatξk+1 → ξk so that a finite collection ofξks will be equivalent toξk∗ wherek∗ is
the highest indexk appearing in the collection. We will show thatφ ↔ Γ. Once we
show this, by compactness theorem,φ↔ Γ1 for some finite subsetΓ1 of Γ and by the
preceding observation,φ is equivalent toξn ∈ Γ1 for somen.
If M |= φ, then sinceφ ∈ PS, every substructure of it modelsφ - in particular, the
substructure induced by anyk-elements ofM . ThenM |= ξk for everyk and hence
M |= Γ.
Conversely, supposeM |= Γ. Then every finite substructure ofM modelsφ. LetM
be theτM structure corresponding toM . Consider any finite subsetS of the diagram
D(M) of M . Let C be the finite set of constants referred to inS. ClearlyM|τ∪C,
namely the(τ ∪ C)-reduct ofM modelsS sinceM |= D(M). Then consider the
substructureM1 of M|τ∪C induced by the intepretations of the constants ofC - this
satisfiesS. Now sinceC is finite, so isM1. Then theτ−reduct ofM1 - a finite
substructure ofM modelsφ.
ThusS ∪ {φ} is satisfiable byM1. SinceS was arbitrary, every finite subset of
D(M) ∪ {φ} is satisfiable so that by compactness,D(M) ∪ {φ} is satisfiable by some
structure sayN . Then theτ−reductN of N is s.t. (i)M is embeddable inN and (ii)
N |= φ. Sinceφ ∈ PS, the embedding ofM in N modelsφ and henceM |= φ.

The above proof shows that forφ ∈ PS, there is an equivalent universal sentence
whose matrix isφ itself, relativised to the universal variables. In fact, byLemma 4,
there is an optimal (in terms of the number of universal variables) such sentence.
An observation from the proof of Theorem 5 is that, the Łoś-Tarski theorem is true
over any class of structures satisfying compactness - hencein particular the class of
structures definable by a FO theory (indeed this result is known). But there are classes
of structures which are not definable by FO theories but stillsatisfy compactness: Con-
sider any FO theory having infinite models and consider the class of models of this
theory whose cardinality is not equal to a given infinite cardinal. This class satisfies
compactness but cannot be definable by any FO theory due to Löwenheim-Skolem
theorem. Yet Łoś-Tarski theorem would hold over this class.
Having seen the usefulness of relativization in proving Theorem 4 whenB equals 0,
it is natural to ask if this technique works for higher valuesof B too. We answer this
negatively.

3.2 Limitations of relativization

We show by a concrete example that relativization cannot be used to prove Theorem
4 in general. This motivates us to derive necessary and sufficient conditions for rela-
tivization to work.
Example 3: Considerφ = ∃x∀yE(x, y) overτ = {E}. Note thatφ is in PSC(1).
Supposeφ is equivalent toψ = ∃x∀nȳφ|xȳ for somen. Consider the structure
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M = (Z,≤) namely the integers with usual≤ linear order. Any finite substructure
of M satisfiesφ since it has a minimum element (under the linear order). Thentaking
x to be any integer, we see thatM |= ψ. HoweverM 6|= φ sinceM has no minimum
element - a contradiction. The same argument can be used to show thatφ cannot be
equivalent to any sentence of the form∃nx̄ ∀mȳ φ|x̄ȳ.

We now give necessary and sufficient conditions for relativization to work. Towards
this, we introduce the following notion. Considerφ ∈ FO(τ) s.t. φ ∈ PSC(B).
Consider a vocabularyτB obtained by expandingτ with B fresh constants. Consider
the classSall

φ of τB-structures with the following properties:

1. For each(M,a1, . . . , aB) ∈ Sall
φ whereM is a τ−structure anda1, . . . , aB ∈

M ,M |= φ and{a1, . . . , aB} forms a core ofM w.r.t. φ.

2. For each modelM of φ, for each coreC = {a1, . . . , al} of M w.r.t. φ s.t.
l ≤ B and for each functionp : {1, . . . , B} → C with rangeC, it must be that
(M,p(1), . . . , p(B)) ∈ Sall

φ .

We now have the following.

Theorem 6 Givenφ ∈ PSC(B), the following are equivalent.

1. Sall
φ is finitely axiomatizable.

2. φ is equivalent to∃Bx̄ ∀nȳ φ|x̄ȳ for somen ∈ N.

3. φ is equivalent to a∃B∀∗ sentenceψ such that in any modelM of ψ andφ, the
following hold:

(a) The underlying set of any witness forψ is a core ofM w.r.t. φ.

(b) Conversely, ifC is a core ofM w.r.t. φ, x1, . . . , xB are the∃ variables
of ψ and f : {x1, . . . , xB} → C is any function with rangeC, then
(f(x1), . . . , f(xB)) is witness forψ in M .

Proof:
(1) → (2): Let Sall

φ be finitely axiomatizable. Check thatSall
φ ∈ PS so that by Łoś-

Tarski theorem, it is axiomatizable by aΠ0
1 FO(τB)-sentenceψ having sayn ∀ quan-

tifiers. Further, by Lemma 4,ψ is equivalent toγ = ∀nz̄ψ|z̄ . Now considerϕ =
∃Bx̄ ∀nȳ φ|x̄ȳ. Firstly, from Lemma 5,φ → ϕ. Conversely, supposeM |= ϕ. Let
a1, . . . , aB be witnesses and consider theτB-structureMB = (M,a1, . . . , aB). Now
MB |= ∀nȳ φ|x̄ȳ. We will show thatMB |= γ. Considerb1, . . . , bn ∈ M and let
M1 = MB({b1, . . . , bn}). ThenM1 |= ∀nȳ φ|x̄ȳ. Check that theτ−reduct ofM1

(i) modelsφ and (ii) contains{a1, . . . , aB} as a core. ThenM1 ∈ Sall
φ and hence

M1 |= ψ. Sinceb1, . . . , bn were arbitrary,MB |= γ. Sinceγ ↔ ψ andψ axiomatizes
Sall
φ , theτ−reduct ofMB, namelyM , modelsφ.

(2) → (3): Takeψ to be∃B x̄ ∀nȳ φ|x̄ȳ. Consider a modelM of φ andψ. The setC of
elements of any witness forψ forms a core ofM w.r.t. ψ. Then sinceφ↔ ψ,C is also
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a core ofM w.r.t. φ. Conversely, consider a coreC of M w.r.t. φ. Then any substruc-
ture ofM containingC satisfiesφ. Then check that elements ofC form a witness forψ.

(3) → (1): Let φ ↔ ψ whereψ = ∃Bx̄ ∀nȳβ(x̄, ȳ) whereβ is quantifier free andψ
satisfies the conditions mentioned in (3). Considerϕ = ∀nȳ β[x1 7→ c1, . . . , xB 7→
cB] wherec1, . . . , cB areB fresh constants andxi 7→ ci means replacement ofxi
by ci. If MB = (M,a1, . . . , aB) |= ϕ, thenM |= ψ and henceM |= φ. Since
a1, . . . , aB are witnesses forψ in M , they form a core ofM w.r.t. φ by assumption,
so thatMB ∈ Sall

φ . Conversely, ifMB = (M,a1, . . . , aB) ∈ Sall
φ , thenM |= φ and

a1, . . . , aB form a core inM . Then by assumption,M |= ψ anda1, . . . , aB are wit-
nesses forψ. ThenMB |= ϕ. To sum up,ϕ axiomatizesSall

φ .

Considerφ andM in the Example 3 above. Take any finite substructureM1 of M - it
modelsφ. There is exactly one witness forφ in M1, namely the least element under≤.
However every element inM1 serves as a core. The above theorem shows that no∃∀∗

sentence will be able to capture exactly all the cores through its∃ variable.
In the following sections, we shall study Theorem 4 for several special classes of FO
and over special structures. Interestingly, in most of the cases in which Theorem 4 turns
out true, relativization works! However we also show a case in which relativization
does not work, yet Theorem 4 is true.

4 Positive Special Cases for Theorem 4

4.1 Theorem 4 holds for special fragments of FO

Unless otherwise stated, we consider relational vocabularies throughout the section.
The following lemma will be repeatedly used in the subsequent results.

Lemma 5 Letφ ∈ PSC(B). For everyn ∈ N, φ implies∃Bx̄ ∀nȳ φ|x̄ȳ.

Proof: SupposeM |= φ. Sinceφ ∈ PSC(B), there is a coreC of M of size at most
B. Interpretx̄ to include all the elements ofC (in any which way). SinceC is a core,
for anyn-tuple d̄ of elements ofM , having underlying setD, the substructure ofM
induced byC ∪D modelsφ. Then(M, ā, d̄) |= φ|x̄ȳ for all d̄ fromM .

Lemma 6 Let τ be a monadic vocabulary containingk unary predicates. Letφ ∈
FO(τ) be a sentence of rankr s.t. φ ∈ PSC(B). Thenφ is equivalent toψ where
ψ = ∃B x̄ ∀nȳ φ|x̄ȳ wheren = r × 2k. For B = 0, n is optimal i.e. there is an FO
sentence inPSC(0) for which any equivalentΠ0

2 sentence has atleastn quantifiers.

Proof: Thatφ impliesψ follows from Lemma 5. For the converse, supposeM |= ψ
wheren = r × 2k. By an Ehrenfeucht-Fräissé game argument, we can show that M
contains a substructureMS such that (i)M ≡r MS , with |MS | ≤ n and (ii) for any
extensionM ′ ofMS inM ,M ′ ≡r MS . The substructureMS is obtained by taking up
to r elements of each colourc ∈ 2τ present inM . An elementa in structureM is said
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to have colourc if for every predicateP ∈ Σ, M |= P (a) iff P ∈ c. SinceM |= ψ,
there exists witnesses̄a for ψ in M . Choosēb to be ann-tuple which includes the
elements ofMS. This is possible because|MS | ≤ n. Then we have,(M, ā, b̄) |= φ|x̄ȳ
so thatM(āb̄) |= φ. ButMS ⊆M(āb̄) ⊆M so thatM(āb̄) ≡r M . ThenM |= φ.

To see the optimality ofn for B = 0, consider the sentenceφ which states that there
exists at least one colourc ∈ 2τ such that there exist at mostr − 1 elements with
colourc. The sentenceφ can be written as a formula with rankr, as the disjunction
over all colours, of sentences of the form,∃x1∃x2 · · · ∃xr−1∀xr(

∧r−1
i=1 xr 6= xi) →

¬C(xr). From the preceding paragraph,φ ↔ ∀nȳ φ|ȳ wheren = r × 2k. Suppose
φ is equivalent to a∀s sentence for somes < n. Then by Lemma 4,φ ↔ ϕ where
ϕ = ∀sȳ φ|ȳ. Then consider the structureM , which hasr elements of each colour.
Clearly,M 6|= φ. However check that everys-sized substructure ofM modelsφ. Then
M |= ϕ and henceM |= φ - a contradiction.

Lemma 7 LetS ∈ PSC(B) be a finite collection ofτ−structures so thatS is definable
by aΣ0

2 sentenceφ ∈ PSC(B). ThenS is definable by the sentenceψ whereψ =
∃Bx̄ ∀nȳ φ|x̄ȳ for somen ∈ N.

Proof: Check that all structures inS must be of finite size so thatφ exists. Let the size
of the largest structure inS be atmostn. Considerψ. Lemma 5 shows thatφ → ψ.
Conversely, supposeM |= ψ. Then there exists a witnessā s.t. any extension ofM(ā)
within M with atmostn additional elements modelsφ. SinceM is of size atmostn,
taking the extensionM of M(ā), we haveM |= φ. Sinceφ definesS so doesψ.

Lemma 8 Considerφ ∈ Π0
2 given byφ = ∀nx̄ ∃mȳ β(x̄, ȳ) whereβ is quantifier free.

If φ ∈ PSC(B), thenφ is equivalent toψ whereψ = ∃B ū ∀nv̄ φ|ūv̄.

Proof: From Lemma 5,φ → ψ. For the converse, letM |= ψ and letā be a witness.
Consider ann−tuple b̄ fromM . ThenM1 = M(āb̄) is s.t.M1 |= φ. Then forx̄ = b̄,
there exists̄y = d̄ s.t. d̄ is anm−tuple fromM1 andM1 |= β(b̄, d̄). ThenM |= β(b̄, d̄)
sinceM1 ⊆M . HenceM |= φ.

Lemma 9 Supposeφ ∈ PSC(B) and¬φ ∈ PSC(B′). Thenφ is equivalent toψ
whereψ = ∃Bx̄ ∀B

′

ȳ φ|x̄ȳ.

Proof: From Lemma 5,φ impliesψ. For the converse, supposeM |= ψ. Then there
is a witness̄a for ψ s.t. for anyB′-tuple b̄, the substructure induced bȳab̄ i.e. M(āb̄)
modelsφ. SupposeM 6|= φ. ThenM |= ¬φ so that there is a coreC of M w.r.t. ¬φ,
of size at mostB′. Let d̄ be aB′-tuple which includes all the elements ofC. Then
M(ād̄) |= φ. ButM(ād̄) ⊆M containsC so thatM(ād̄) |= ¬φ – a contradiction.

Observe that for the special case ofB = 0, we get combinatorial proofs of Łoś-Tarski
theorem for the fragments mentioned above. Moreover all of these proofs and hence
the results hold in the finite. We mention that the result of Lemma 8 holding in the
finite was proved by Compton too (see [7]). We were unware of this until recently and
have independently arrived at the same result. The reader isreferred to Section 6 for
our studies on morepositivecases of Łoś-Tarski in the finite.
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Interestingly, Lemma 9 has implications for the∆0
2 fragment of FO. Define∆0

2(k, l) ⊆
∆0

2 to be the class of sentences which have a∃k∀∗ and a∀l∃∗ equivalent. Note that
∆0

2 =
⋃

l,k≥0 ∆
0
2(k, l). Lemma 9 gives us the following right away.

Theorem 7 The following are equivalent:

1. φ ∈ PSC(k) and¬φ ∈ PSC(l).

2. φ is equivalent to a∃k∀l and a∀l∃k sentence.

3. φ ∈ ∆0
2(k, l).

As a corollary, we see that∆0
2(k, l) is a finite class upto equivalence. We are not

aware of any other semantic characterization of these natural fragments of∆0
2. This

highlights the importance of the notion of cores and the sizes thereof.

4.2 Theorem 4 over special classes of structures

We first look at Theorem 4 over finite words which are finite structures in the vocab-
ulary containing one binary predicate≤ (always interpreted as a linear order) and a
finite number of unary predicates (which form a partition of the universe). And we
obtain something stronger than Theorem 4. Before that, we mention that the idea of
relativization can be naturally extended to MSO. Givenφ in MSO and a set of variables
Z = {z1, . . . , zn}, φ|Z is obtained by first converting all∀X to ¬∃X and then replac-
ing every subformula∃Xχ(X, . . .) with

∨

Y ⊆Z((
∧

z∈Y X(z) ∧
∧

z∈Z\Y ¬X(z)) ∧

χ(X, . . .)). The resultingFO formula is then relativized toZ and simplified to elim-
inate the (original) SO variables. As before, abusing notation, we useφ|Z andφ|z̄
interchangeably.
Note: We at times will refer to the ‘structure’ connotation of a word and at other times
refer to the ‘string’ connotation of it. This would however be clear from the context
(typically language-theoretic notions used for a word would mean we are talking about
it as a string whereas model-theoretic notions used for it would mean we are referring
to it as a structure).

Theorem 8 Over words, a MSO sentenceφ is inPSC(B) iff it is equivalent toψ where
ψ = ∃B x̄∀kȳφ|x̄ȳ for somek ∈ N.

Proof sketch: We use the fact that over words, by the Büchi-Elgot-Trakhtenbrot theo-
rem [4],MSO sentences define regular languages. The ‘If’ direction is easy. For the
‘Only if’ direction, let the regular languageL defined byφ be recognized by ann state
automaton, sayM. If there is no word of length> N = (B + 1) × n in L, thenL is
a finite language of finite words and hence from Lemma 7, we are done. Else suppose
there is a word of length> N in L. Then considerψ above fork = N . It is easy to ob-
serve thatφ impliesψ. In the other direction, supposew |= ψ for some wordw. Then
there exists a setA of elementsi1, . . . , im s.t. (i)m ≤ B andi1 < i2 · · · < im and (ii)
every substructure ofw of size atmostN +m containingA modelsφ. From Lemma
10 below, there exists a substructurew1 of w containingA such that (i)|w1| ≤ N and
(ii) w1 ∈ L iff w ∈ L. Thenw1 modelsφ and hencew |= φ. Thusψ impliesφ and
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hence is equivalent toφ.

Before going into the proof of the lemma, we briefly explain the intuition. Letqj be
the state reached by automatonM upon reading the subwordw[1 . . . ij ]. The subword
w[(ij + 1), . . . ij+1] takesM from qj to qj+1 through a sequenceS of states. Since
M has onlyn states, ifw[(ij + 1), . . . ij+1] is long, thenS will contain at least one
loop. Then getting rid of the subwords that give rise to loops, we will be able to obtain
a subword ofw[(ij + 1), . . . ij+1] that takesM from qj to qj+1 without causingM to
loop in between. It follows that this subword must be of length at mostn. Collecting
such subwords ofw[(ij + 1), . . . ij+1] for eachj and concatenating them, we get a
subword ofw of length at mostN containing setA that takesM from the initial state
to the same state asw. We now formalize this intuition.

Lemma 10 Let L be a regular language having ann state automaton accepting it.
Given a natural numberB, consider a wordw ∈ Σ∗ of length> N = (B+1)×n. Let
A = {i1, . . . , im} wherei1 < i2 . . . < im be a given set of elements from the universe
of w. Then there is a substructurew1 of w containingA such that (i)|w1| ≤ N and
(ii) w1 ∈ L iff w ∈ L.

Proof:
LetM = (Q,Σ, δ, q0, F ) be a DFA acceptingL whereQ = {q0, . . . , qn−1} is the set
of states,Σ is the alphabet,δ is the transition function,q0 is the initial state andF is
the set of final states. We use the following notation: Ifz is a sequence of objects, then
we usez(k) to denote thekth element ofz andz [k . . . l] to denote the subsequence of
z formed by thekth, (k + 1)th, . . . lth elements ofz for k, l s.t. 1 ≤ k ≤ l ≤ (length
of z).
Let q(i + 1), 1 ≤ i ≤ |w| be the state ofQ after reading the wordw [1 . . . i]. We take
q(1) to beq0. Then letq = (q(i))1≤i≤(|w|+1) be the sequence of these states. We are
givenA = {i1, . . . , im} which is a subset ofm elements of the universe ofw. Let
i0 = 1 andim+1 = |w| + 1. For j ∈ {0, . . . ,m}, considerq [ij . . . ij+1]. Setp = ij
to s = ij+1 − 1. We collect a setT of indices betweenp ands using the procedure
below:
Initialize i to p.

1. If i > s, then stop.

2. If i = s, then puti into T and incrementi by 1.

3. If i < s, then letk s.t. p ≤ k ≤ s be the highest index such thatq(i) = q(k).
Then putk into T and update the value ofi to bek + 1.

At the end of this procedure, let the indices inT bek1, . . . , kl wherek1 < k2 < · · · <
kl if T is non-empty. Note thatT is empty iff ij = ij+1 only if j = 0. Also note that
at termination, the value ofi must bes+ 1. Finally note thatq(ij), q(k1 + 1), q(k2 +
1), . . . , q(kl) must all be distinct so thatl ≤ n.
Then consider the subwordwj of w given by
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wj =

{

ǫ if T is empty

w(k1) · w(k2) · · ·w(kl) if T is non-empty

Observe that|wj | ≤ n. Let r1, . . . , rl be the states the automatonM goes through
whenwj is applied to stateq(ij).
We consider the following cases:

1. T is non-empty.

Now from the wayk1 was chosen by the above procedure,q(ij) = q(k1). Then
if M is in stateq(ij), onw(k1), it moves to stater1 given byr1 = q(k1 + 1).
Similarly, the indexk2 is s.t.q(k2) = q(k1+1) so that ifM is in stater1, then on
w(k2), it moves to stater2 given byr2 = q(k2+1). Continuing this way we find
that onw(kl), if M is in staterl−1, it moves to staterl given byrl = q(kl + 1).
Now as observed above, at termination, the value ofimust bes+1 = ij+1. This
can happen in only two ways: (a) In the previous iteration of the procedure, step
(2) was executed in which cases was put inT - thenkl = s. (b) In the previous
iteration of the procedure, step (3) was executed in which cases again was put
intoT so thatkl = s. Then in either casekl = s = ij+1−1 so thatrl = q(ij+1).

Thus we see that bothwj andw [ij . . . (ij+1 − 1)], when applied toM in state
q(ij), takeM to the same state, namelyq(ij+1).

2. T is empty.

Thenwj = ǫ and ij = ij+1 in which casew [ij . . . (ij+1 − 1)] = ǫ so that
both these words applied toM in stateq(ij), takeM to the same state, namely
q(ij+1).

Then consider the wordw1 = w0 ·w1 · · ·wm. From the above observations, it follows
thatw1 applied to the initial state ofM takesM to the same state asw. Thenw1 ∈ L
iff w ∈ L. Further since for eachj, |wj | ≤ n, we have that|w1| ≤ (m + 1) × n ≤
(B + 1)× n = N .

Returning to Theorem 8, observe that for the special case ofB = 0, we obtain Łoś-
Tarski theorem for words and also give a bound for the number of ∀s in the equivalent
Π0

1 sentence in terms of the number of states of the automaton forφ. We have not
encountered this result in our literature survey.
Before proceeding ahead, as a slight diversion, we give a simpler proof of Łoś-Tarski
theorem over words. In fact, over words, we have the following stronger result.

Lemma 11 Consider any setS of words which is closed under taking substructures.
ThenS can be defined by aΠ0

1 sentence.

Proof: ConsiderS = Σ∗ \ S - the complement ofS. SinceS is closed under taking
substructures,S is closed under taking extensions. Then consider the setT of minimal
words ofS, i.e. words ofS for which no subword is contained inS. We show that
T must be finite. SupposeT were infinite. If we arrange the words ofT to form
a sequence - which is infinite - then by Higman’s lemma, there is some word in the
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sequence which is a subword of another in the sequence. That means some word of
T is a subword of another word inT . But that contradicts the minimality of the latter
word.
ThenT is finite. Taking the disjunction of the existential closures of the diagrams of
the words ofT , we get aΣ0

1 sentence definingS. Then taking the negation of this
sentence, we get the desiredΠ0

1 sentence definingS.

Thus contrary to the general setting where it is not necessary for a set of structures
preserved under substructures to be even FO-expressible, leave alone being definable
by aΠ0

1 sentence, over words,Π0
1 sentences show much greater power.

We return to Theorem 4 now. So far, relativization has workedin all the cases we have
seen. We now give an example of a class of structures over which relativization fails,
yet Theorem 4 is true.
Consider a subclassC of bounded degree graphs in which each graph is a collection
(finite or infinite) oforientedpaths (finite or infinite). For clarity, by oriented path we
mean a graph isomorphic to a connected induced subgraph of the graph(V,E) where
V = Z andE = {(i, i+ 1) | i ∈ Z}. Observe thatC can be axiomatized by a theoryT
which asserts that every node has in-degree atmost 1 and out-degree atmost 1 and that
there is no directed cycle of lengthk for eachk ≥ 0. We first show the following.

Lemma 12 For eachB ≥ 1, there is a sentenceφ ∈ PSC(B) which is not equivalent,
overC, to anyψ of the form∃Bx̄ ∀nȳ φ|x̄ȳ .

Proof: Considerφwhich asserts that there are atleastB elements oftotaldegree atmost
1 where total degree is the sum of in-degree and out-degree. Clearly φ ∈ PSC(B)
since it is expressible as a∃B∀∗ sentence. Supposeφ is equivalent toψ of the form
above for somen ∈ N. ConsiderM ∈ C which is a both-ways infinite path so that
every node inM has total degree 2 - thenM 6|= φ. ConsiderB distinct points on
this path at a distance of atleast2n from each other and form aB−tuple sayā with
them. Letb̄ be anyn−tuple fromM . Now observe thatM(āb̄) is a finite structure
which has atleastB distinct paths (0-sized paths included). ThenM(āb̄) |= φ so that
(M, ā, b̄) |= φ|x̄ȳ. Sincēb was arbitrary,M |= ψ so thatM |= φ. Contradiction.

However Theorem 4 holds overC!

Theorem 9 Over the classC of graphs defined above,φ ∈ PSC(B) iff φ is equivalent
to a∃B∀∗ sentence.

Proof: If τ = {E} is the vocabulary ofφ, let τB be a vocabulary obtained by addding
B fresh constantsc1, . . . , cB to τ . Given a classS of τ−structures, defineSB to be the
class ofall τB−structures s.t. theτ−reduct of each structure inSB is in S. Then the
proof can be divided into two main steps. Below≡ denotes elementary equivalence.
Step 1: Givenφ, define classC′ ⊆ C such that for every structureA ∈ CB, there exists
structureD ∈ C′

B such thatA ≡ D (Property I). Since compactness theorem holds
overCB (asCB is defined by the same theoryT asC), it also holds overC′

B.
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Step 2 : Show thatφ is equivalent to an∃B∀∗ sentence overC′, hence showing the
same overC as well.
Note: The conditions inStep 1imply that for everyA ∈ C, there existsD ∈ C′ such
thatA ≡ D. Then since compactness theorem holds overC, it also holds overC′.
Suppose the rank ofφ ism. We defineC′ to be the set of graphsG ∈ C such that either
(a) there exists a boundnG (dependent onG) such that all paths inG have length less
thannG (this does not mean thatG is finite - there could be infinite paths of the same
length inG) or (b) there are atleast(B +m+ 2) paths inG which are infinite in both
directions. It can be shown thatC′ satisfies Property I (SeeA below). We proceed
assuming this to be true.
Now, to showStep 2, we use the following approach.
Let P ∈ C′ be s.t. P |= φ. Choose a coreZ in P (recall thatφ ∈ PSC(B)). Let
MP ∈ C′

B be aτB−structure whoseτ−reduct isP and in which each element ofZ
is assigned to some constant. LetΓMP be the set of all∀∗ sentences true inMP . We
can show that ifM ′ ∈ C′

B is such thatM ′ |= ΓMP , thenM ′ |= φ (SeeB below.
We proceed assuming this to be true). That is, if every finite substructure ofM ′ is
embeddable inMP , thenM ′ |= φ. Then overC′

B, ΓMP → φ. Now, sinceC′
B satisfies

compactness theorem, there exists a finite subsetΓMP

0 of ΓMP such thatΓMP

0 → φ
overC′

B. Note that, sinceΓMP

0 is a conjunction of∀∗ sentences, we can assume that
ΓMP

0 is a single∀∗ sentence.
Let φP be theτ−sentence of the form∃B∀∗ obtained by replacing theB constants in
ΓMP

0 by B fresh variables and existentially quantifying these variables. Then check
thatφP → φ. It is easy to see thatφ →

∨

P∈C′,P |=φ φP (If P |= φ, then interpret the
∃ quantifiers inφP as the chosen coreZ mentioned above). By compactness theorem
over C′, there exists a finite set of structures, say{P1, · · · , Pm} such thatPi ∈ C′,
Pi |= φ andφ →

∨i=m
i=1 φPi

. Then, we haveφ ↔
∨i=m

i=0 φPi
overC′. Since eachφPi

is of the form∃B∀∗,
∨i=m

i=0 φPi
is also of the same form. That completesStep 2and

completes the proof.

Below we shall be referring to the notions of ‘ball type of radius r’ (or simply r−ball
type), ‘disjoint unions’ (denoted by⊔) and ‘m-equivalence’ (denoted by≡m). We
shall also use Hanf’s theorem. The reader is referred to [8] for these concepts.

A. C′ satisfies Property I
SupposeA ∈ CB. If there exists a boundnA, such that all paths inA have length less
thannA, thenA ∈ C′

B and hence we are done. Contrarily, suppose that there is no such
boundnA. This means that either there are paths of arbitrarily largelengths inA or
there is atleast one infinite path inA (Let us mark this inference as [*]). Now, construct
structureD ∈ C′

B, whereD = A ⊔
⊔k+m+2

i=1 P , whereP is a path which is infinite in
both directions and⊔ denotes disjoint union. We show thatA ≡ D, by showing that
for everyn ∈ N, A ≡n D. By Hanf’s theorem [8], givenn, there exist numbersr
andq, dependent only onn, such thatA ≡n D if for each ball typeξ of radiusr, the
number of instances ofξ in A andD are either equal or are both are greater thanq. By
adding(B +m + 2) paths, we are introducing infinite copies of just oner−ball type
ξ in D, namely the2r + 1 length path with the ball center as the midpoint. However,
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this typeξ was already present infinitely many times inA (due to [*]). Hence Hanf’s
condition holds for every typeξ, and thus,A ≡ D.

B. If M1 ∈ C′
B is such thatM1 |= ΓMP , thenM1 |= φ

Before, we proceed, we state and prove the following lemma. Below, an ‘outwardly’
(resp. ‘inwardly’) infinite path is an oriented infinite pathwith an end point which has
an outgoing (resp. incoming) edge and no incoming (resp. outgoing) edge.

Lemma 13 For everym ∈ N and structureG ∈ C, there exists a substructureGm ⊆
G, such thatGm ≡m G andGm has
− atmost finitely many finite paths
− atmostm paths which are outwardly-infinite
− atmostm paths which are inwardly-infinite
− atmost1 path which is bidirectionally-infinite

Proof: By Hanf’s Theorem, there existstm ∈ N, such that any two paths of length
greater thantm arem-equivalent. For any graphG ∈ C, define the following,
− for i ∈ N, let aGi be the number ofi length paths
− aG↑ be the number of outwardly-infinite paths
− aG↓ be the number of inwardly-infinite paths
− aGl be the number of bidirectionally-infinite paths
GivenG, considerGm ⊆ G given as,
− for i ∈ {0, · · · , tm}, aG

m

i = min(aGi ,m)

− aG
m

tm+1 = min(
∞
∑

i=tm+1

aGi ,m)

− for i > (tm + 1), aG
m

i = 0
− aG

m

↑ = min(aG↑ ,m)

− aG
m

↓ = min(aG↓ ,m)

− aG
m

l = min(aGl , 1)
By Hanf’s theorem, it is easy to see thatGm ⊆ G andGm ≡m G.

SupposeM1 ∈ C′
B is such thatM1 |= ΓMP . To show thatM1 |= φ, we show that there

exists a substructureM2 of MP such thatM1 ≡m M2 (recall thatP is a model ofφ
andMP is the expansion ofP with the elements of a chosen coreZ as interpretations
of theB constants). Sinceφ ∈ PSC(B), P |= φ, and any substructure ofMP would
contain the coreZ of P , we have thatM2 |= φ. And sinceM1 ≡m M2, we would
haveM1 |= φ.
Consider the partition ofMP into two partsMP,1 andMP,2, whereMP,1 is substruc-
ture containing all those paths inMP which contain the interpretation of atleast one
of the constantsc1, · · · , cB andMP,2 contains all the paths inMP which are not in
MP,1. Similarly, consider the partition ofM1 intoM1,1 andM1,2. There are two cases
to consider.

Case 1 :There exists a boundnP such that all paths inP (andMP ) have length less
thannP
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Note that sinceM1 |= ΓMP , for every finite substructure ofM1, there exists an iso-
morphic substructure ofMP . And since all paths inMP have length less thannP ,
we have that all paths inM1 have length less thannP as well. Consider the substruc-
tureMS

1 = M1,1 ⊔Mm
1,2 ⊆ M1 (whereMm

1,2 is as defined in Lemma 13). Clearly,
MS

1 ≡m M1. Moreover, since bothM1,1 andMm
1,2 are finite,MS

1 is finite, hence there
exists a substructureM2 ⊆ MP , such thatMS

1 andM2 are isomorphic. And since
M2 |= φ (see above for the reasoning), we haveMS

1 |= φ and henceM1 |= φ (since
MS

1 ≡m M1).

Case 2 :There are atleast(B+m+2) paths inMP which are infinite in both directions.
Consider a pathL in M1 containing the interpretationai of a constantci. SinceM1 |=
ΓMP , one can see thatLmust be a subpath of some path inMP - infact subpath of some
path inMP,1. Thus, arguing similarly for each pathL ⊆M1,1, we haveM1,1 ⊆MP,1.
Also, since there are(B +m+ 2) bidirectional-infinite paths inMP , atleast(m+ 2)
of these would be present inMP,2. Now, sinceMm

1,2 ⊆ M1,2 (as defined in Lemma
13) contains,

– finitely many finite paths - all of these can be embedded in a single bidirectional
infinite path

– atmostm outwardly-infinite and atmostm inwardly-infinite paths - all of these
can be embedded inm bidirectional-infinite paths

– atmost1 bidirectional-infinite path : can be embedded in a single bidirectional-
infinite path.

it follows thatMm
1,2 can be embedded intoMP,2. Thus,MS

1 = M1,1 ⊔ Mm
1,2 ⊆

MP,1 ⊔ MP,2 = MP . HenceMS
1 |= φ. And sinceMm

1,2 ≡m M1,2, we have
MS

1 ≡m M1, and henceM1 |= φ.

Thus, we have shown that ifM1 ∈ C′
B andM1 |= ΓMP , thenM1 |= φ.

We now look at some classes of structures over which Theorem 4fails.

5 Theorem 4 fails over special classes of structures

We first look at the classF of all finite structures. Łoś-Tarski theorem fails over this
class and hence so does Theorem 4 (forB = 0). However, we have the following
stronger result. We prove it for relational vocabularies (constants permitted).

Lemma 14 For relational vocabularies, Theorem 4 fails, overF , for eachB ≥ 0.

Proof: We refer to [1] for the counterexampleχ for Łoś-Tarski in the finite. Letτ be
the vocabulary ofχ (i.e. {≤, S, a, b}) along with a unary predicateU . Let us call an
elementx as having colour 0 in a structure ifU(x) is true in the structure and having
colour 1 otherwise. Letϕ be a sentence asserting that there are exactlyB elements hav-
ing colour 0 and these are different froma andb. Then considerφ = ¬χ ∧ ϕ. Check
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that since¬χ is preserved under substructures in the finite, in any model of φ, theB
elements of colour 0 form a core of the model w.r.t.φ. Thenφ ∈ PSC(B). Suppose
φ is equivalent toψ given by∃Bx̄∀nȳ β whereβ is quantifier-free. Observe that in
any model ofφ andψ, any witness forψ must include all theB elements of colour 0
(else the substructure formed by the witness would not modelϕ and henceφ, though it
would modelψ). Consider the structureM = ({0, 1, . . . , B + 2n+ 3},≤, S, a, b, U)
where≤ is the usual linear order on numbers,S is the (full) successor relation of≤,
a = 0, b = B + 2n + 3 andU = {1, . . . , B}. Now M 6|= φ sinceM 6|= ¬χ.
ConsiderM1 which is identical toM except thatS(B + n + 1, y) is false inM1 for
all y. ThenM1 |= φ so thatM1 |= ψ. Any witnessā for ψ must include all the
B colour 0 elements ofM1. Then choose exactly the same value, namelyā, from
M to assign tōx. Choose anȳb as ȳ from M . Check that it is possible to choosēd
as ȳ from M1 s.t. M(āb̄) is isomorphic toM1(ād̄) under the isomorphismf given
by f(0) = 0, f(B + 2n + 3) = B + 2n + 3, f(ai) = ai andf(bi) = di where
ā = (a1, . . . , aB), b̄ = (b1, . . . , bn) andd̄ = (d1, . . . , dn). Then sinceM1 |= β(ā, d̄),
M |= β(ā, b̄). ThenM modelsψ, and henceφ. But that is a contradiction.

The example expressed byχ can also be written as a sentence in a purely relational
vocabulary. The sentenceφ below is over the vocabularyτ = {≤, S, U}. We leave
it to the reader to reason out (in the same manner as in [1]) that φ is preserved under
substructures in the finite but is not equivalent to any universal sentence.
φ = χ1 ∧ χ2 ∧ χ3 where
χ1 = ∀x∀y∀z ((x ≤ x) ∧ ((x ≤ y) ∨ (y ≤ x)) ∧

((x ≤ y) ∧ (y ≤ z)) → (x ≤ z))

χ2 = ∀x∀y S(x, y) → ∀z(((x ≤ z) ∧ (x 6= z)) → (y ≤ z))

χ3 = ∃z∀x1∀x2 (
∧i=2

i=1 ¬U(xi) ∧ (x1 6= x2)) → (χ4(x1, x2, z) ∨ χ4(x2, x1, z))

χ4(x1, x2, z) = ∀y ((x1 ≤ y) ∧ (y ≤ x2)∧
((y 6= x1) ∧ (y 6= x2)) → U(y) ∧
((z 6= x2) ∧ ¬S(z, y)))

Then one can do a similar proof as above to show that for purelyrelational vocabularies
too, for eachB ≥ 0, Theorem 4 fails overF .

So far, in all the cases we have seen, it has always been the case that Theorem 4 and
Łoś-Tarski theorem either are both true or are both false. We then finally have the
following result which is our first instance of a class of structures over whichŁoś-
Tarski theorem holds but Theorem 4 fails.

Theorem 10 Over the classC of graphs in which each graph is a finite collection of
finiteundirectedpaths, for eachB ≥ 2, there is a sentenceφ ∈ PSC(B) which is not
equivalent to any∃B∀∗ sentence. However, Łoś-Tarski theorem holds overC.

Proof: Łoś-Tarski theorem holds from the results of Dawar et al. over bounded degree
structures [2]. As a counterexample to Theorem 4 forB ≥ 2, consider conditionD1,
parametrized byB, which asserts that there are atleastB paths (0 length included) in
the graph. We show that this is FO definable because the following equivalent condition
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D2, parametrized byB, is FO definable: (The number of nodes of degree 0) +1
2× (the

number of nodes of degree 1)≥ B. We briefly explain this equivalence betweenD1

andD2. Consider a graph satisfyingD1. Letk be the number of 0-length paths so that
there are atleastB− k paths of length≥ 1. Each of the latter paths has exactly 2 nodes
of degree 1. Then it is easy to check that conditionD2 holds. Conversely, suppose
a graph satisfiesD2, but it has less thanB paths. Letk be the number of0-length
paths so that there are atmostB − 1 − k paths of length≥ 1. Each of the latter paths
has exactly 2 nodes of degree 1. Then, (the number of nodes of degree 0) +1

2× (the
number of nodes of degree 1)≤ (k + 1

2 × 2× (B − 1− k)) < B – contradictingD1.
ThenD2 impliesD1.
Then, givenB, D1 is expressible by a FO sentenceφ sinceD2 is FO expressible (the
latter is easy to see).
To see thatφ is in PSC(B), in any model, observe that the set of nodes formed by
picking up one end point each ofB distinct paths is a core.
Now suppose thatφ is equivalent overC to ψ = ∃Bx̄ ∀nȳ β(x̄, ȳ) for somen ∈ N

whereβ is quantifier-free. Consider a graphM which has exactly
⌈

B
2

⌉

paths, each
of length≥ 5n (There is nothing sacrosanct about the number 5 - it is just sufficiently
large for our purposes). By definition,M 6|= φ and henceM 6|= ψ. Label the end points
of these paths asp1, p2, p3, . . . , p2·k wherek =

⌈

B
2

⌉

. Now consider a graphN having
exactlyB paths, each of length≥ 5n . By definition,N |= φ and henceN |= ψ.
Then there exists a witnessā = (a1, . . . , aB) in N for ψ. Observe that no two of the
ais can be in the same path else taking the substructure ofN formed by just the paths
containinḡa, one would get a model ofψ and henceφ - but the number of paths in this
model would be≤ B − 1, giving a contradiction. We now choose pointsb1, . . . , bB
in M as follows. Fori ∈ {1, . . . , B}, if ai is at a distance of atmostn from any end
point inN , then choosebi to be at the same distance frompi in M . Else choosebi
to be at a distance ofn from pi in M . Assigningb̄ = (b1, . . . , bB) as x̄, choose any
d̄ as ȳ from M . Check that it is possible to chooseē as ȳ from N s.t. M(b̄d̄) is iso-
morphic toN(āē) under the isomorphismf given byf(bi) = ai, f(dj) = ej where
d̄ = (d1, . . . , dn) andē = (e1, . . . , en). SinceN |= β(ā, ē), M |= β(b̄, d̄). ThenM
modelsψ – a contradiction.

Important Note : ForB = 2, the sentenceφ above is equivalent to asserting that either
(i) there are atleast2 nodes of degree exactly 0 or (ii) there are atleast3 nodes of degree
atmost 1. Consider the following condition forB ≥ 2 whose special case forB = 2
is the condition just mentioned: Either (i) there are atleast B nodes of degree exactly 0
or (ii) there are atleastB + 1 nodes of degree atmost 1. This condition, for a givenB,
is easily seen to be expressible as a FO sentenceξ (in fact, ξ is of the form∃B+1∀∗).
But forB > 2, ξ /∈ PSC(B). To see this, consider a graphM containing exactly2
pathsP1 andP2 of length≥ 1 andB − 3 paths of length0 (the total number of paths
is then< B). We will show thatM has no core (w.r.t.ξ) of size atmostB. Firstly,
M |= ξ sinceM hasB + 1 nodes of degree atmost 1. Ifξ ∈ PSC(B), thenM has
a coreC of size atmostB. There are 2 cases: (a) One ofP1 or P2 has atmost 1 core
element. (b) BothP1 andP2 have atleast 2 core elements. In case of (b), note that
atleast one of the 0-length paths will not contain any core element. Then consider the
substructureM1 of M without this path - this contains all core elements and hence
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must satisfyξ. However, there are exactlyB elements of degree atmost 1 inM1 and
henceM1 violatesξ. In case of (a), there are two subcases: (i) One ofP1 or P2, say
P1 w.l.o.g., contains no core element. Then the substructureM1 of M which is all
of M , but excludingP1, contains all core elements and must hence modelξ. ButM1

contains exactlyB − 1 nodes of degree atmost 1; so it violatesξ. (ii) One ofP1 orP2,
sayP1 w.l.o.g., contains exactly 1 core element saya. LetM1 be the substructure of
M withoutP1. Consider the disjoint unionM3 of M1 and the substructureM2 of M
induced bya. ThenM3 ⊆M contains all core elements and must hence modelξ. But
M3 contains exactlyB nodes of degree atmost 1; so it violatesξ.
In all cases, we have a contradiction. HenceM has no core of size≤ B. Hence
ξ /∈ PSC(B).
Interestingly however, Theorem 4 holds overC for B = 1 as we shall see in the next
Lemma. We also give a simpler proof for the case ofB = 0 i.e. Łoś-Tarski overC.

Lemma 15 Over C, for B ≤ 1, φ ∈ PSC(B) iff φ is equivalent toψ whereψ =
∃Bx̄ ∀nȳ φ|x̄ȳ for somen ∈ N.

Proof: Let the quantifier rank ofφ bem. By Hanf’s theorem, we have the following:

A There exists a numbertm ∈ N such that any two undirected paths of length greater
thantm arem−equivalent.

B There exists a numbersm ∈ N such that given a structureG = (P, a) whereP ∈ C
is (finite) path of length greater thansm anda is a designated element ofP , there
is a substructureG1 = (P1, a) of G s.t. (i) P1 is a subpath ofP containing the
designated elementa, (ii) |P1| ≤ sm and (iii)G ≡m G1.

C For any graphG ∈ C, let aGi be the number of undirected paths of lengthi in G.
Now, given graphG ∈ C, we consider a graphGm ⊆ G as follows (similar to the
method in the proof of Theorem 9):

− for i ∈ {0, · · · , tm}, aG
m

i = min(aGi ,m)

− aG
m

tm+1 = min(
∞
∑

i=tm+1

aGi ,m)

− for i > (tm + 1), aG
m

i = 0

By Hanf’s theorem, it is easy to verify thatGm ≡m G.

Now consider the statement of the (current) lemma forB = 1. Let n = sm +
i=tm+1
∑

i=0

(m · (i + 1)) and considerψ given byψ = ∃x ∀nȳ φ|xȳ. Thatφ → ψ fol-

lows from Lemma 5. For the converse, supposeG |= ψ. Let a be a witness and letP
be the path inG on whicha appears. Consider the vocabularyτ1 = {E}∪ {c1} where
c1 is a fresh constant and considerG = (G, a) - theτ1-structure obtained by expanding
G with a as the interpretation forc1. LetG = G1 ⊔G2 whereG1 = (P, a) andG2 ∈ C
is the collection of all paths inG other thanP . Note that we have abused the⊔ notation
slightly but the idea of separatingP anda from the rest ofG is clear. Now,
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− Let G′
1 ⊆ G1 be the structure ensured by [B] above. Then (i)|G′

1| ≤ sm and (ii)
G′
1 ≡m G1.

− LetGm
2 be as given by [C] above. Then (i)Gm

2 ⊆ G2, (ii) |Gm
2 | ≤

i=tm+1
∑

i=0

m ·(i+1)

and (iii)Gm
2 ≡m G2.

ThenG′ = (G′
1 ⊔ Gm

2 ) ≡m (G1 ⊔ G2) = G. Also G′ ⊆ G. Note that|G′| ≤ sm +
i=tm+1
∑

i=0

m · (i + 1) = n. Now sinceG |= ψ, choosex = a andȳ = d̄ whered̄ is any

tuple containing exactly the elements ofG′ - this is possible since|G′| ≤ n as we just
saw. Then(G, a, d̄) |= φ|x̄ȳ so thatG′ |= φ. ThenG |= φ and henceG |= φ.
ForB = 0, there is noG1 and hence noG′

1. It is easy to see that the same proof goes
through.

6 Additional observations on Łós-Tarski theorem over
the class of all finite structures

We will refer to truth or failure of Łoś-Tarski over the class of all finite structures
simply as the truth or failure of Łoś-Tarski ‘in the finite’.
Now as observed earlier in Sections 4 and 5, while Łoś-Tarski fails in the finite, there
are special fragments of FO for which Łoś-Tarski istrue in the finite. We present
below two additional fragments of FO for which Łoś-Tarski is true in the finite. This
would follow from their combinatorial proofs and hence we state the results below for
arbitrary structures.

Lemma 16 Considerφ of the form∃x∀yψ(x, y) in a purely relational vocabulary
τ . If φ ∈ PS, thenφ is equivalent toϕ = ∀z1 . . .∀znφ|{z1,...,zn} wheren = 2|τ |.
Further, this bound is tight i.e. there is a∃∀ sentence inPS which is not equivalent to
a universal sentence with less thann quantifiers.

Proof:
From Lemma 5, it follows that ifM |= φ thenM |= ϕ. Therefore to prove the lemma,
it suffices to show that ifM |= ϕ, that is, every substructure ofM with size atmost
n is a model ofφ, then infactM |= φ. We prove it by contradiction, so assume that
M |= ϕ∧¬φ. The main idea is to useM to come up with a structure which modelsφ,
but which has a substructure which is a non-model ofφ. This contradicts thatφ ∈ PS.
[Note that|M | > n for such anM , since if |M | ≤ n andM |= ϕ thenM |= φ as
well.]
Since every substructure ofM with size atmostn modelsφ, every1 sized substructure
of M is a model ofφ, and henceψ(x, x) is true for everyx ∈ M (recall thatφ =
∃x∀yψ(x, y)). Now note thatn = 2|τ | is the number of all1-types possible over the
vocabularyτ upto equivalence (Ani-typeof τ is a quantifier-free formula overτ which
uses justi variables. The number ofi types is finite upto equivalence. See [8] where
our i-type is calledrank-0,i-type). Denote the1-types as{σ0, · · · , σn−1}, andσi(x)
denotes thatx is of 1-typeσi. Suppose that there exists an elementx0 of 1-typeσi in
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M . SinceM |= ∀x∃y¬ψ(x, y), there exists ay0 such thatψ(x0, y0) is false inM .
However, since every substructure of size atmostn is a model ofφ, the substructure
M({x0, y0}) |= φ and henceψ(y0, x0) must be true inM (since eitherx0 or y0 must
act as a witness forx in φ. But ψ(x0, y0) is false. Hencex0 cannot be the witness).
Let y0 be of1-typeσk.
Suppose that it is possible to have a structureA with just two elements{a0, a1} such
thatσi(a0), σi(a1) and¬ψ(a0, a1) hold. Then consider the structureX with universe
{a0, a1, a2, b} such that (i)σi(aj) holds forj ∈ {0, 1, 2} (ii) σk(b) holds
(iii) ¬ψ(aj , a(j+1)mod 3) holds forj ∈ {0, 1, 2} (iv) ψ(b, aj) holds forj ∈ {0, 1, 2} and
(v) ψ(b, b). Such a structure exists because all the 1-types and 2-typeshave beencopied
from other structures, namely, (i), (iii) are copied from A and (ii), (iv), (v) copied from
M . Clearly,X |= φ, sinceb ∈ X acts as a witness forx in φ. However, the substructure
of X induced by{a0, a1, a2} 6|= φ. This contradicts the given assumption ofφ ∈ PS.
Hence, it is not possible to have a structureA as assumed, and hence taking a structure
A′ with two elementsa0, a1 such thatσi(a0), σi(a1) hold, necessitates thatψ(a0, a1)
must hold (Note that for every1-typeσi in M , one can construct such anA′

i).
ConsiderM ′ to be a substructure ofM which contains exactly one element of each1-
type present inM . Clearly|M ′| ≤ n and henceM ′ |= φ. Thus, there existsx1 ∈ M ′

such that for everyy1 ∈ M ′, ψ(x1, y1) holds. Suppose thatσl(x1) holds. Construct
an extensionM̄ of M with an additional elementz0 such that (i)σl(z0) holds (ii)
∀y ∈M ψ(z0, y) holds (iii)ψ(z0, z0) holds. Such a structurēM exists because all the
1-types and 2-types have beencopiedfrom other structures, namely (i), (iii) are copied
fromM , (ii) is copied fromM for y satisfying¬σi(y), and fory satisfyingσi(y), the
2-type is copied fromA′

l. Clearly,M̄ |= φ asz0 ∈ M̄ acts a witness forx in φ. How-
ever,M ⊆ M̄ andM 6|= φ. This again contradicts thatφ ∈ PS. Hence, our original
assumption that there existsM such thatM |= ϕ ∧ ¬φ is incorrect. Thenϕ→ φ.

To prove the optimality of the bound, consider the followingexample over a vocab-
ulary of k unary predicates. We construct a formulaφ such that the smallestn for
which φ ↔ ∀z1 · · · ∀znφ|{z1,...,zn} is infact n = 2k. Suppose for contradiction
thatφ ↔ ∀z1 . . . ∀znψ. Then by Lemma 4,φ ↔ ∀z1 · · · ∀zn−1φ|{z1,...,zn−1}. Let
{σ0, · · · , σn−1} be the set of all1-types.

Defineφ = ∃x∀y
n−1
∧

i=0

(σi(x) → ¬σ(i+1) modn(y)). It is easy to check that the se-

mantic interpretation ofφ implies thatM |= φ if and only if there exists atleast one
1-typeσj which is not present inM . Now consider the structureM which has ex-
actly one copy of each1-typeσi. Clearly, in every substructure ofM which has size
less than or equal ton − 1, there exists atleast one1-type which is missing. Hence
M |= ∀z1 · · · ∀zn−1φ|{z1,...,zn−1}. However,M 6|= φ as all1-types are present inM .
This is a contradiction. Henceφ 6↔ ∀z1 · · · ∀zn−1φ|{z1,...,zn−1}, and thus, the bound
n = 2|τ | is optimal.

Lemma 17 Let τ be a purely relational vocabulary andφ be a sentence inFO(τ) s.t.
(i) φ = ∃x1 . . .∃xk∀yψ(x1, . . . , xk, y) whereψ is quantifier free and no∃ variable
is compared with a∀ variable using equality (ii)φ ∈ PS. Thenφ is equivalent to
ϕ = ∀z1 . . .∀znφ|{z1,...,zn} wheren is 2|τ |.
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Proof:
From Lemma 5, we haveφ → ϕ. Therefore to prove the lemma, it suffices to show
that if M |= ϕ, that is, every substructure ofM with size atmostn is a model ofφ,
then infactM |= φ. We prove it by contradiction, so assume thatM |= ϕ ∧ ¬φ. The
main idea is to useM to come up with a structure which modelsφ, but which has a
substructure which is a non-model ofφ. This contradicts thatφ ∈ PS. [Note that
|M | > n, since if|M | ≤ n andM |= ϕ thenM |= φ as well.]
ConsiderM ′ to be a substructure ofM which contains exactly one element of each
1-type present inM . Clearly |M ′| ≤ n and henceM ′ |= φ. Thus, there exists
a1, · · · , ak ∈M ′ such that for everyb ∈M ′, ψ(a1, · · · , ak, b) holds. Construct an ex-
tensionM̄ ofM with k additional elements{z1, · · · , zk} such that (i)M̄({z1, · · · , zk})
is isomorphic toM ′({a1, · · · , ak}) via the isomorphismf(zi) = ai
(ii) ∀y ∈ M ψ(z1, · · · , zk, y) holds. Such a structurēM exists because allr-types
(r ≤ k + 1) have been obtained bycopyingpredicate values from other structures as
now explained. The types in (i) are copied fromM ′. The types in (ii) are copied as
they are fromM ′ as follows: supposey0 ∈ M ′ has the same1-type asy ∈ M , then
r-type {z1, · · · , zk, y} in M̄ (wherer is the number of distinct elements present in
{z1, · · · , zk, y}) is obtained by having all propositional statements,α(z1, · · · , zk, y)
to have the same value in̄M asα(a1, · · · , ak, y0) in M ′, where there is no equality
betweeny andzj in α. Then,ψ(z1, · · · , zk, y0) is true inM̄ , asψ(a1, · · · , ak, y0)
is true inM ′. Also, since there are no equality comparisons betweenzj andy in ψ,
ψ(z1, · · · , zk, y) has the same value asψ(a1, · · · , ak, y0), even ify0 was infact one
of the ajs itself. Thus, we havēM |= φ as z1, · · · , zk ∈ M̄ act as witnesses for
x1, · · · , xk in φ. However,M ⊆ M̄ andM 6|= φ. This contradicts thatφ ∈ PS.
Hence, our original assumption that there existsM such thatM |= ϕ∧¬φ is incorrect.
Thenϕ→ φ.

We now make the following important observation given our results. Over the class of
all finite structures and for purely relational vocabularies, the following hold:

1. Łoś-Tarski holds trivially for theΣ0
1 andΠ0

1 fragments of FO. AΣ0
1 sentence in

PS is actuallyvalid. There is nothing to do in theΠ0
1 case.

2. By Lemma 8, Łoś-Tarski holds forΠ0
2.

3. The counterexample to Łoś-Tarski in the finite, given as apurely relational sen-
tenceφ after Lemma 14 in Section 5, is an∃∀4 sentence. Then Łoś-Tarski fails
in the finite forΣ0

k andΠ0
k for all k ≥ 3.

4. By Lemmas 16 and 17, for the∃∀ fragment (with equality) ofΣ0
2 and the∃∗∀

fragment (with restricted equality) ofΣ0
2, Łoś-Tarski holds.

This then leaves open only the following cases to investigate for Łoś-Tarski in the finite
for purely relational vocabularies.

1. Full ∃∗∀ fragment (in particular, the ‘with-equality’ case)

2. ∃∗∀2
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3. ∃∗∀3

4. ∃∀4 without equality

Any resolution of all these cases would give a complete characterizationof the dividing
line in the class of prefix fragments of FO, over purely relational vocabularies, between
those prefix fragments for which Łoś-Tarski holds in the finite and those for which it
does not!
We are currently trying to see if Lemmas 16 and 17 go through for relational vocabu-
laries too (constants permitted). If so, then observing that the counterexampleχ men-
tioned in the proof of Lemma 14 is a∃∀3 sentence, the only cases left to investigate
would be the above cases of (1) and (2) and finally the∃∀3 fragment without equality.
With any resolution of these cases, we would get a complete characterization of the di-
viding line in the class of prefix fragments of FO, over relational vocabularies, between
those prefix fragments for which Łoś-Tarski holds in the finite and those for which it
does not.

7 Proof of Theorem 4

We first introduce some notations. Given a vocabularyτ , we denote byτk, the vo-
cabulary obtained by expandingτ with k-fresh constants, sayc1, . . . , ck. Given aτ -
structureM andk elementsb1, . . . , bk from M , we denote by(M, b1, . . . , bk), the
τk-structure whoseτ -reduct isM and in which the constantci is interpreted asbi for
1 ≤ i ≤ k. Finally, for aτ -structureM , we denote by|M |, the power ofM , i.e. the
cardinality of the universe ofM .

We begin with the following definition.

Definition 3 (k-cover) Given aτ -structureM , we call a setK of τ -structures as a
k-coverof M if (i) N ⊆ M for eachN ∈ K (ii) the union of the universes of the
elements ofK is the universe ofM and (iii) for every atmostk-sized subsetS of the
universe ofM , there exists an element ofK containingS. We callM as theunion of
K and denoteM as

⋃

K.

Note that givenM , there always exists ak-cover of it - choose the setK above as
{M}.

Definition 4 (Preservation underk-covers) AFO(τ)-sentenceφ is said to be pre-
served underk-covers, if for allτ -structuresM and all k-coversK of M , if every
structure inK satisfiesφ, thenM satisfiesφ.

We will assume familiarity with the notion of saturations described in [5] and recall
now the following theorems from [5] which we will use subsequently.

Proposition 1 (A special case of Proposition 5.1.1(iii) in [5]) Given an infinite cardi-
nal λ and aλ-saturated structureM , for everyk-tuple(a1, . . . , ak) of elements from
M wherek ∈ N, (M,a1, . . . , ak) is alsoλ-saturated.



25

Proposition 2 (Proposition 5.1.2(ii) in [5])M is finite iffM is λ−saturated for all
cardinalsλ.

Theorem 11 (A special case of Lemma 5.1.4 in [5]) Letτ be a finite vocabulary,λ be
an infinite cardinal andM be aτ -structure such thatω ≤ |M | ≤ 2λ. Then there is a
β-saturated elementary extension ofM for β ≥ λ.

Theorem 12 (Lemma 5.2.1 in [5]) Givenτ -structuresM andN and a cardinalλ,
suppose that (i)M is λ-saturated (ii)λ ≥ |N | and (iii) every existential sentence true
in N is also true inM . ThenN is embeddable inM .

Putting Theorem 11 and Proposition 2 together we get the following.

Corollary 3 For everyτ−structureM , there exists aβ-saturated elementary exten-
sion ofM for some cardinalβ ≥ ω.

Towards our syntactic characterization, we first prove the following.

Lemma 18 Given a finite vocabularyτ , consider aFO(τ)-sentenceφ which is pre-
served underk-covers and letΓ be the set of all∀k∃∗ consequences ofφ. Then for all
infinite cardinalsλ, for everyλ-saturated structureM , if M |= Γ, thenM |= φ.

Proof:
If φ is either unsatisfiable or valid, then the result is immediate.
Else, considerM satisfying the assumptions above. To show thatM |= φ, it suf-
fices to show that for every atmostk-sized subsetS of the universe ofM , there is
a substructureMs of M containingS such thatMs modelsφ. Then the setK =
{Ms|S is an atmostk-sized subset of the universe of M} forms ak-cover ofM . Fur-
ther sinceφ is preserved underk-covers,M |= φ.
Let a1, . . . , ak be the elements of a subsetS of the universe ofM . To show the exis-
tence ofMs, it suffices to show that there exists aτk-structureN s.t. (i)N is of power
atmostλ (ii) every ∃∗ sentence true inN is also true in(M,a1, . . . , ak) (ii) N |= φ.
SinceM is λ-saturated, by Proposition 1,(M,a1, . . . , ak) is alsoλ-saturated. Then
from Theorem 12,N is embeddable into(M,a1, . . . , ak). Then theτ -reduct of the
copy ofN in (M,a1, . . . , ak) can be taken to beMs referred to above.
We now show the existence ofN to complete the proof.
Let P be the set of all∀∗ sentences ofFO(τk) which are true in(M,a1, . . . , ak).
Consider the setT = {φ} ∪ P . SupposeT is unsatisfiable. Then by Compactness
theorem, there is a finite subset ofT which is unsatisfiable. SinceP is closed un-
der taking finite conjunctions and since each ofP andφ is satisfiable, there exists a
sentenceψ in P s.t. {φ, ψ} is unsatisfiable. Thenφ → ¬ψ. Now φ is a FO(τ)
sentence whileψ is a FO(τk) sentence. Then by∀-introduction,φ → ϕ where
ϕ = ∀x1 . . .∀xk¬ψ[c1 7→ x1; . . . ; ck 7→ xk] wherex1, . . . , xk arek fresh variables
andci 7→ xi denotes replacement ofci by xi. Now note that sinceψ is a∀∗ sentence,
¬ψ is a∃∗ sentence (inFO(τk)) and henceϕ is a∀k∃∗ sentence (inFO(τ)). Then
ϕ ∈ Γ so thatM |= ϕ. Then(M,a1, . . . , ak) |= ¬ψ. This contradicts the fact that
ψ ∈ P .
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ThenT is satisfiable. By Löwenheim-Skolem theorem, there is a model N of T of
power atmostλ. SinceN models every∀∗ sentence true in(M,a1, . . . , ak), it follows
that every∃∗ sentence true inN is true in(M,a1, . . . , ak). Finally, sinceN |= φ, N
is indeed as desired.

Theorem 13 Given a finite vocabularyτ , a FO(τ)-sentenceφ is preserved underk-
covers iff it is equivalent to a∀k∃∗ sentence.

Proof:
Let Γ be the set of all∀k∃∗ consequences ofφ. It is easy to see thatφ → Γ. For the
converse direction, supposeM |= Γ. By Corollary 3, there is aβ−saturated elementary
extensionM+ ofM for someβ ≥ ω. ThenM+ |= Γ. Then from Lemma 18, it follows
thatM+ |= φ. SinceM+ is elementarily equivalent toM , we have thatM |= φ.
ThenΓ → φ and henceφ ↔ Γ. By Compactness theorem,φ is equivalent to a finite
conjunction of sentences ofΓ. SinceΓ is closed under finite conjunctions,φ is equiva-
lent to a∀k∃∗ sentence.

We now prove Theorem 4.

Theorem 4 Given a finite vocabularyτ , aFO(τ) sentenceφ is in PSC(B) iff it is
equivalent to a∃B∀∗ sentence.

Proof: We infer from Theorem 13 the following equivalences.
φ is equivalent to a∃B∀∗ sentence iff
¬φ is equivalent to a∀B∃∗ sentence iff
For allτ -structuresM and allB-coversK ofM , if ∀N ∈ K, N |= ¬φ, thenM |= ¬φ
iff
For allτ -structuresM and allB-coversK of M , if M |= φ then∃N ∈ K, N |= φ

Assumeφ ∈ PSC(B). SupposeK is aB-cover ofM and thatM |= φ. Since
φ ∈ PSC(B), there exists a coreC of M of size atmostB. Then by definition of
B-cover, there existsN ∈ K s.t. (i)N containsC and (ii)N ⊆ M . Then sinceC
is a core ofM , N |= φ by definition ofPSC(B). Then by the equivalences shown
above,φ is equivalent to a∃B∀∗ sentence. It is easy to see that an∃B∀∗ sentence is in
PSC(B).

8 Conclusion and Future Work

For future work, we would like to investigate cases for whichcombinatorial proofs of
Theorem 4 can be obtained. This would potentially improve our understanding of the
conditions under which combinatorial proofs can be obtained for the Łoś-Tarski theo-
rem as well. An important direction of future work is to investigate whether Theorem 4
holds for important classes of finite structures for which the Łoś-Tarski theorem holds.
Examples of such classes include those considered by Atserias et al. in [2]. We have
also partially investigated how preservation theorems canbe used to show FO inex-
pressibility for many typical examples (see [12]). We wouldlike to pursue this line of
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work as well in future.
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