Skip to main content

Differential Evolution and Perceptron Decision Trees for Classification Tasks

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

Abstract

Due to its predictive capacity and applicability in different fields, classification has been one of the most important tasks in data mining. In this task, the Perceptron Decision Trees (PDT) have been used with good results. Thus, this paper presents a Differential Evolution algorithm that evolves PDTs. Furthermore, we also present the concept of legitimacy which is used to reduce the costs of solution evaluation, a time consuming part of the algorithm. The experiments comparing our method with other seven well known classifiers, show that the proposed approach is competitive and has potential to build very accurate models. The best solutions found by it were the best ones in the majority of the tested databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, K.P., Auslender, L., Wu, D., Ave, S.: On support vector decision trees for database marketing. Technical report, Department of Mathematical Sciences Math Report No. 98-100, Rensselaer Polytechnic Institute (1998)

    Google Scholar 

  2. Bennett, K., Mangasarian, O.: Multicategory discrimination via linear programming. Optimization Methods and Software 3(1-3), 27–39 (1994)

    Article  Google Scholar 

  3. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research 2, 1–32 (1994)

    MATH  Google Scholar 

  4. Bennett, K., Cristianini, N., Shawe-Taylor, J., Wu, D.: Enlarging the margins in perceptron decision trees. Machine Learning 41(3), 295–313 (2000)

    Article  MATH  Google Scholar 

  5. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(1), 54–68 (2003)

    Article  Google Scholar 

  7. Breiman, L.: Classification and regression trees. Chapman & Hall/CRC (1984)

    Google Scholar 

  8. Brodley, C., Utgoff, P.: Multivariate decision trees. Machine Learning 19(1), 45–77 (1995)

    MATH  Google Scholar 

  9. Prado, R.S., Pedrosa Silva, R.C., GuimarĂ£es, F.G., Neto, O.M.: Using differential evolution for combinatorial optimization: A general approach. In: SMC, pp. 11–18 (2010)

    Google Scholar 

  10. Quinlan, J.R.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann (January 1993)

    Google Scholar 

  11. Shi, H.: Best-first decision tree learning. Master’s thesis, University of Waikato, Hamilton, NZ (2007)

    Google Scholar 

  12. Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg, L.: Weka. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1305–1314. Springer, US (2005)

    Chapter  Google Scholar 

  13. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  14. Buhmann, M.D., Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Zhang, H.: Exploring conditions for the optimality of naĂ¯ve bayes. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 19(2), 183–198 (2005)

    Article  Google Scholar 

  17. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopes, R.A., Freitas, A.R.R., Silva, R.C.P., GuimarĂ£es, F.G. (2012). Differential Evolution and Perceptron Decision Trees for Classification Tasks. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics