Skip to main content

A Transitional View of Immune Inspired Techniques for Anomaly Detection

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Abstract

The use of Immune Inspired approaches for anomaly detection have been adopted in the literature because of its analogy with body resistance in the human immune system provided against agents which causes diseases. There are many models in biology that attempt to explain the immune system behavior, as well some engineering systems inspired on these models. Our goal is to document the development of these models in a transitional view, some aspects which may be considered on these algorithms and on their applicability in engineering problems, with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balthrop, J.L.: Riot: A responsive system for mitigating computer network epidemics and attacks (July 2005)

    Google Scholar 

  2. Cayzer, S., Aickelin, U.: The danger theory and its application to artificial immune systems, University of Kent at Canterbury. pp. 141–148 (2002)

    Google Scholar 

  3. Costa Silva, G., Palhares, R.M., Caminhas, W.M.: Immune inspired fault detection and diagnosis: A fuzzy-based approach of the negative selection algorithm and participatory clustering. Expert Systems with Applications (Accepted for publication, 2012)

    Google Scholar 

  4. Dasgupta, D., Nĩno, F.: Immunological Computation: Theory and Applications. CRC Press (2008)

    Google Scholar 

  5. de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  6. de Castro, L.N.: Immune cognition, micro-evolution, and a personal account on immune engineering. Semiotics, Evolution, Energy, and Development Journal 3(3), 134–155 (2003)

    Google Scholar 

  7. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, p. 202 (1994)

    Google Scholar 

  8. Gong, M., Zhang, J., Ma, J., Jiao, L.: An efficient negative selection algorithm with further training for anomaly detection. Knowledge-Based Systems 30, 185–191 (2012)

    Article  Google Scholar 

  9. Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Greensmith, J., Aickelin, U.: Artificial Dendritic Cells: Multi-Faceted Perspectives. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. SCI, vol. 182, pp. 375–395. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Greensmith, J., Aickelin, U., Cayzer, S.: Detecting Danger: The Dendritic Cell Algorithm. In: Schuster, A. (ed.) Robust Intelligent Systems, vol. 12, pp. 89–112. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Hofmeyr, S.A.: An immunological model of distributed detection and its application to computer security. Ph.D. thesis, University of New Mexico (May 1999)

    Google Scholar 

  14. Ji, Z.: A Boundary-Aware Negative Selection Algorithm. In: Proceedings of the 9th International Conference on Artificial Intelligence and Soft Computing. ACTA Press (2005)

    Google Scholar 

  15. Ji, Z., Dasgupta, D.: Augmented negative selection algorithm with variable-coverage detectors. In: Congress on Evolutionary Computation, CEC 2004, vol. 1, pp. 1081–1088 (2004)

    Google Scholar 

  16. Ji, Z., Dasgupta, D.: Applicability issues of the real-valued negative selection algorithms. In: Proceedings of the 8th annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 111–118. ACM, New York (2006)

    Chapter  Google Scholar 

  17. Ji, Z., Dasgupta, D.: Revisiting negative selection algorithms. Evolutionary Computation 15(2), 223–251 (2007)

    Article  Google Scholar 

  18. Laurentys, C., Ronacher, G., Palhares, R., Caminhas, W.: Design of an artificial immune system for fault detection: A negative selection approach. Expert Systems with Applications 37(7), 5507–5513 (2010b)

    Article  Google Scholar 

  19. Laurentys, C.A., Palhares, R.M., Caminhas, W.M.: Design of an artificial immune system based on danger model for fault detection. Expert Syst. Appl. 37, 5145–5152 (2010a)

    Article  Google Scholar 

  20. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science 403(1), 11–32 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  21. Twycross, J., Aickelin, U., Whitbrook, A.: Detecting anomalous process behaviour using second generation artificial immune systems. International Journal of Unconventional Computing 6, 301–326 (2010)

    Google Scholar 

  22. Vella, M., Roper, M., Terzis, S.: Danger Theory and Intrusion Detection: Possibilities and Limitations of the Analogy. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 276–289. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Xu, Q., Wang, S., Zhang, C.: Structural design of the danger model immune algorithm. Information Sciences (2012)

    Google Scholar 

  24. Zhang, J., Liang, Y.: A novel intrusion detection model based on danger theory. In: Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application (2008)

    Google Scholar 

  25. Zhang, R., Tran, T.: An information gain-based approach for recommending useful product reviews. Knowledge and Information Systems 26, 419–434 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa Silva, G., Palhares, R.M., Caminhas, W.M. (2012). A Transitional View of Immune Inspired Techniques for Anomaly Detection. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics