Skip to main content

Regional Models for Nonlinear System Identification Using the Self-Organizing Map

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

Abstract

Global modelling is a common approach to the problem of learning nonlinear dynamical input-output mappings. It consists in training a single multilayer neural network model using the whole dataset. On the other side of the spectrum stands the local modelling approach, in which the input space is divided into very small partitions and simpler (e.g. linear) models are trained, one per partition. In this paper, we propose a novel approach, called Regional Models (RM), that stands in between the global and local modelling ones. By following the approach by Vesanto and Alhoniemi [11], we first partition the input-output space using the Self-Organizing map (SOM), and then perform clustering over the prototypes of the trained SOM in order to find clusters of prototypes. Finally, a regional model is built for each cluster using the data vectors mapped to that cluster. The proposed approach is evaluated on two benchmarking problems and its performance is compared to those achieved by standard global and local models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barreto, G.A., Araújo, A.F.R.: Identification and control of dynamical systems using the self-organizing map. IEEE Transactions on Neural Networks 15(5), 1244–1259 (2004)

    Article  Google Scholar 

  2. Barreto, G.A., Souza, L.G.M.: Adaptive filtering with the self-organizing maps: A performance comparison. Neural Networks 19(6), 785–798 (2006)

    Article  MATH  Google Scholar 

  3. Chen, J.-Q., Xi, Y.-G.: Nonlinear system modeling by competitive learning and adaptive fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics-Part C 28(2), 231–238 (1998)

    Article  Google Scholar 

  4. Cho, J., Principe, J., Erdogmus, D., Motter, M.: Quasi-sliding mode control strategy based on multiple linear models. Neurocomputing 70(4-6), 962–974 (2007)

    Google Scholar 

  5. Huang, G.B., Zhu, Q.Y., Ziew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  6. Jain, A.K., Dubes, R.C., Chen, C.C.: Bootstrap techniques for error estimation. IEEE Transactions on Pattern Analysis and Machine Ingelligence 9(5), 628–633 (1987)

    Article  MATH  Google Scholar 

  7. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks 1(1), 4–27 (1990)

    Article  Google Scholar 

  8. Norgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic Systems. Springer (2000)

    Google Scholar 

  9. Peng, H., Nakano, K., Shioya, H.: A comprehensive review for industrial applicability of artificial neural networks. IEEE Transactions on Control Systems Technology 15(1), 130–143 (2007)

    Article  Google Scholar 

  10. Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proceedings of the IEEE 86(11), 2240–2258 (1998)

    Article  Google Scholar 

  11. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  12. Walter, J., Ritter, H., Schulten, K.: Non-linear prediction with self-organizing map. In: Proceedings of the IEEE International Joint Conference on Neural Networks, IJCNN 1990, vol. 1, pp. 587–592 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Souza Junior, A.H., Barreto, G.A. (2012). Regional Models for Nonlinear System Identification Using the Self-Organizing Map. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics