Skip to main content

Fault Detection in Continuous Industrial Chemical Processes: A New Approach Using the Hidden Markov Modeling. Case Study: A Boiler from a Brazilian Cellulose Pulp Mill

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

Abstract

The development of automatic and reliable monitoring systems is an open issue in continuous industrial chemical processes. The challenges lay on simultaneously managing multiple normal modes of operation as well as the transitions among them with reasonable false alarm rates, and in reaching early fault detection. This work explores and attests the capacity of the signal processing method called hidden Markov model (HMM) in contributing to overcome these issues. After presenting the motivation for its use in this engineering field, the methodology is introduced and an application is illustrated. Here, the HMM ability of directly learning from process historical data both desired features system dynamics and structure of correlations is shown. Aiming to reach practical insights a real case study based on operations of an industrial boiler is used. A comparison with Principal Components Analysis (PCA) and Self-Organizing Maps (SOM) shows the effectiveness of the proposed HMM-based fault detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabiner, L.: A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  2. Rabiner, L., Juang, B.: An Introduction to Hidden Markov Models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Article  Google Scholar 

  3. Kosky, T.: Hidden Markov Models of Bioinformatics. Springer, New York (2002)

    Google Scholar 

  4. Cappe, O., Moulines, E.: Inference in Hidden Markov Models. Springer, New York (2010)

    Google Scholar 

  5. Mamom, R.S., Elliott, R.J.: Hidden Markov Models in Finance. Springer, New York (2007)

    Google Scholar 

  6. Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2001)

    Book  MATH  Google Scholar 

  7. Wang, X.Z.: Data Mining and Knowledge Discovery for Process Monitoring and Control. Springer, London (1999)

    Book  Google Scholar 

  8. Almeida, G.M., Reis, M.P.S., Park, S.W.: A Signal Processing Approach for Fault Detection Problem: Application to the DAMADICS Actuator Benchmark Problem. To appear in: 22nd European Symposium on Computer Aided Process Engineering (ESCAPE), IChemE Press, London (2012)

    Google Scholar 

  9. Chen, J., Chang, W.: Applying Wavelet-Based Hidden Markov Tree to Enhancing Performance of Process Monitoring. Chem. Eng. Sc. 60(18), 5129–5143 (2005)

    Article  Google Scholar 

  10. Sun, W., Palazoglu, A., Romagnoli, J.A.: Detecting Abnormal Process Trends by Wavelet-Domain Hidden Markov Models. AIChE Journal 49(1), 140–150 (2003)

    Article  Google Scholar 

  11. Wong, J.C., McDonald, K.A., Palazoglu, A.: Classification of Abnormal Plant Operation Using Multiple Process Variable Trends. J. Proc. Control 11(4), 409–418 (2001)

    Article  Google Scholar 

  12. Bakhtazad, A., Palazoglu, A., Romagnoli, J.A.: Detection and Classification of Abnormal Process Situations Using Multidimensional Wavelet Domain Hidden Markov Trees. Comp. and Chem. Eng. 24(2-7), 769–775 (2000)

    Article  Google Scholar 

  13. Wong, J.C., McDonald, K.A., Palazoglu, A.: Classification of Process Trends Based on Fuzzified Symbolic Representation and Hidden Markov Models. J. Proc. Control 8(5-6), 395–408 (1998)

    Article  Google Scholar 

  14. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K.: A Review of Process Fault Detection and Diagnosis - Part III: Process History Based Methods. Comp. Chem. Eng. 27(3), 327–346 (2003)

    Article  Google Scholar 

  15. Vakkilainen, E.K.: Kraft Recovery Boilers - Principles and Practice. Valopaino Oy., Helsink (2005)

    Google Scholar 

  16. Adams, T.N., Frederick, W.J., Grace, T.M., Hupa, M., Iisa, K., Jones, A.K., Tran, H.: Kraft Recovery Boilers. Tappi Press, Atlanta (1997)

    Google Scholar 

  17. Viterbi, A.J.: Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Trans. Inform. Theory IT-13, 260–269 (1967)

    Article  Google Scholar 

  18. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Ann. Math. Stat. 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montgomery, D.C.: Introduction to Statistical Quality Control, 6th edn. Wiley, New York (2008)

    Google Scholar 

  20. Aguirre, L.A.: Introducao a Identificacao de Sistemas, 3a edn. UFMG, Belo Horizonte (2007)

    Google Scholar 

  21. Kresta, J.V., Macgregor, J.F., Marlin, T.E.: Multivariate Statistical Monitoring of Process Operating Performance. Can. J. Chem. Eng. 69(1), 35–47 (1991)

    Article  Google Scholar 

  22. Kohonen, T.: Self-Organizing Maps. Springer, Helsink (1995)

    Book  Google Scholar 

  23. Russel, E.L., Chiang, L.H., Braatz, R.D.: Fault Detection in Industrial Processes using Canonical Variate Analysis and Dynamic Principal Component Analysis. Chemometr. Intell. Lab. Syst. 51, 81–93 (2000)

    Article  Google Scholar 

  24. Ku, W., Storer, R.H., Georgakis, C.: Disturbance Detection and Isolation by Dynamic Principal Component Analysis. Chemometr. Intell. Lab. Syst. 30(1), 179–196 (1995)

    Article  Google Scholar 

  25. Barreto, G.A., Mota, J.C.M., Souza, L.G.M., Frota, R.A., Aguayo, L.: Condition Monitoring of 3G Cellular Networks Through Competitive Neural Models. IEEE Trans. Neural Netw. 16(5), 1064–1075 (2005)

    Article  Google Scholar 

  26. Patton, R.J.: Preface. Control Eng. Prac. 14(6), 575–576 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Almeida, G.M., Park, S.W. (2012). Fault Detection in Continuous Industrial Chemical Processes: A New Approach Using the Hidden Markov Modeling. Case Study: A Boiler from a Brazilian Cellulose Pulp Mill. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics