Skip to main content

Merge Method for Shape-Based Clustering in Time Series Microarray Analysis

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2012 (IDEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7435))

  • 1172 Accesses

Abstract

A challenging task in time-course microarray data analysis is to combine the information provided by multiple time series in order to cluster genes meaningfully. This paper proposes a novel merge method to accomplish this goal obtaining clusters with highly correlated genes. The main idea of the proposed method is to generate a clustering, starting from clusterings created from different time series individually, that takes into account the number of times each clustering assemble two genes into the same group. Computational experiments are performed for real-world time series microarray with the purpose of finding co-expressed genes related to the production and growth of a certain bacteria. The results obtained by the introduced merge method are compared with clusterings generated by time series individually and averaged as well as interpreted biologically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, C.-P., Lin, W.-S., Chen, Y.-M., Kuo, B.-J.: Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method. Expert Systems with Applications 38(5), 4661–4667 (2011)

    Article  Google Scholar 

  2. Liu, H., Liu, L., Zhang, H.: Ensemble gene selection by grouping for microarray data classification. Journal of Biomedical Informatics 43(1), 81–87 (2010); PMID: 19699316

    Article  Google Scholar 

  3. Wang, Y., Tetko, I.V., Hall, M.A., Frank, E., Facius, A., Mayer, K.F.X., Mewes, H.W.: Gene selection from microarray data for cancer classification–a machine learning approach. Computational Biology and Chemistry 29(1), 37–46 (2005)

    Article  MATH  Google Scholar 

  4. Wei, J.S., Greer, B.T., Westermann, F., Steinberg, S.M., Son, C.-G., Chen, Q.-R., Whiteford, C.C., Bilke, S., Krasnoselsky, A.L., Cenacchi, N., Catchpoole, D., Berthold, F., Schwab, M., Khan, J.: Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Research 64(19), 6883–6891 (2004)

    Article  Google Scholar 

  5. Coffey, N., Hinde, J.: Analyzing time-course microarray data using functional data analysis - a review. Statistical Applications in Genetics and Molecular Biology 10 (2011); peer-reviewed

    Google Scholar 

  6. Krishna, R., Li, C.-T., Buchanan-Wollaston, V.: A temporal precedence based clustering method for gene expression microarray data. BMC Bioinformatics 11(1), 68 (2010)

    Article  Google Scholar 

  7. Yi, S.-G., Joo, Y.-J., Park, T.: Rank-based clustering analysis for the time-course microarray data. Journal of Bioinformatics and Computational Biology 7(1), 75–91 (2009); PMID: 19226661

    Article  Google Scholar 

  8. Storey, J., Xiao, W., Leek, J., Tompkins, R., Davis, R.: Significance analysis of time course microarray experiments. UW Biostatistics Working Paper Series (August 2004)

    Google Scholar 

  9. Wolfe, C.J., Kohane, I.S., Butte, A.J.: Systematic survey reveals general applicability of ”guilt-by-association” within gene coexpression networks. BMC Bioinformatics 6, 227 (2005); PMID: 16162296

    Article  Google Scholar 

  10. Phan, S., Famili, F., Tang, Z., Pan, Y., Liu, Z., Ouyang, J., Lenferink, A., Mc-Court O’connor, M.: A novel pattern based clustering methodology for time-series microarray data. International Journal of Computer Mathematics 84(5), 585–597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smyth, G.K., Speed, T.: Normalization of cdna microarray data. Methods 31(4), 265–273 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbero, I., Chira, C., Sedano, J., Prieto, C., Villar, J.R., Corchado, E. (2012). Merge Method for Shape-Based Clustering in Time Series Microarray Analysis. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32639-4_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32638-7

  • Online ISBN: 978-3-642-32639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics