Skip to main content

Analysing Robot Swarm Decision-Making with Bio-PEPA

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

We present a novel method to analyse swarm robotics systems based on Bio-PEPA. Bio-PEPA is a process algebraic language originally developed to analyse biochemical systems. Its main advantage is that it allows different kinds of analyses of a swarm robotics system starting from a single description. In general, to carry out different kinds of analysis, it is necessary to develop multiple models, raising issues of mutual consistency. With Bio-PEPA, instead, it is possible to perform stochastic simulation, fluid flow analysis and statistical model checking based on the same system specification. This reduces the complexity of the analysis and ensures consistency between analysis results. Bio-PEPA is well suited for swarm robotics systems, because it lends itself well to modelling distributed scalable systems and their space-time characteristics. We demonstrate the validity of Bio-PEPA by modelling collective decision-making in a swarm robotics system and we evaluate the result of different analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time Markov Chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  2. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–162. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for swarm robotics. In: Proceedings of 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012. IFAAMAS ( in press, 2012)

    Google Scholar 

  4. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-PEPA Tool Suite. In: Proc. of the 6th Int. Conf. on Quantitative Evaluation of Systems (QEST 2009), pp. 309–310. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  5. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for biochemical networks. ENTCS 194(3), 103–117 (2008)

    Google Scholar 

  6. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. TCS 410(33-34), 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Şahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Dixon, C., Winfield, A., Fisher, M.: Towards Temporal Verification of Emergent Behaviours in Swarm Robotic Systems. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 336–347. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  10. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the 2th International Conference on Quantitative Evaluation of SysTems (QEST 2005), pp. 33–43. IEEE Computer Society, Washington, DC (2005)

    Chapter  Google Scholar 

  11. Ijspeert, A., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots 11, 149–171 (2001)

    Article  MATH  Google Scholar 

  12. Kleinrock, L.: Queueing Systems. Theory, vol. 1. Wiley, New York (1975)

    MATH  Google Scholar 

  13. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robotics and Autonomous Systems 60(2), 199–213 (2012)

    Article  Google Scholar 

  14. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a case study in collaborative distributed manipulation. The International Journal of Robotics Research 23(4-5), 415–436 (2004)

    Article  Google Scholar 

  18. Massink, M., Latella, D., Bracciali, A., Harrison, M., Hillston, J.: Scalable context-dependent analysis of emergency egress models. Formal Aspects of Computing 24(2), 267–302 (2012)

    Article  Google Scholar 

  19. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling Non-linear Crowd Dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: Analysing robot swarm decision-making with Bio-PEPA: Complete data (2012), Supplementary information page at http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/

  21. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making. Swarm Intelligence 5(3-4), 305–327 (2011)

    Article  Google Scholar 

  22. Scheidler, A.: Dynamics of majority rule with differential latencies. Phys. Rev. E 83, 031116 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M. (2012). Analysing Robot Swarm Decision-Making with Bio-PEPA. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics