Abstract
Gender is an important demographic attribute of people. This paper provides a survey of human gender recognition in computer vision. A review of approaches exploiting information from face and whole body (either from a still image or gait sequence) is presented. We highlight the challenges faced and survey the representative methods of these approaches. Based on the results, good performance have been achieved for datasets captured under controlled environments, but there is still much work that can be done to improve the robustness of gender recognition under real-life environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mäkinen, E., Raisamo, R.: An experimental comparison of gender classification methods. Pattern Recognition Letters 29(10), 1544–1556 (2008)
Lian, H.C., Lu, B.L.: Multi-view gender classification using local binary patterns and support vector machines. In: Advances in Neural Networks-ISNN 2006, pp. 202–209 (2006)
Benabdelkader, C., Griffin, P.: A Local Region-based Approach to Gender Classification From Face Images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, CVPR Workshops, p. 52 (2005)
Guo, G., Dyer, C.R., Fu, Y., Huang, T.S.: Is gender recognition affected by age? In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2032–2039 (2009)
Gao, W., Ai, H.: Face gender classification on consumer images in a multiethnic environment. In: Advances in Biometrics, pp. 169–178 (2009)
Lu, L., Shi, P.: A novel fusion-based method for expression-invariant gender classification. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 1065–1068 (2009)
Li, B., Lian, X.-C., Lu, B.-L.: Gender classification by combining clothing, hair and facial component classifiers. Neurocomputing, 1–10 (2011)
Kim, H., Kim, D., Ghahramani, Z.: Appearance-based gender classification with Gaussian processes. Pattern Recognition Letters 27, 618–626 (2006)
Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)
Fellous, J.M.: Gender discrimination and prediction on the basis of facial metric information. Vision Research 37(14), 1961–1973 (1997)
Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)
Baluja, S., Rowley, H.A.: Boosting sex identification performance. International Journal of Computer Vision 71(1), 111–119 (2007)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)
Shakhnarovich, G., Viola, P., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 16–23 (2002)
Abdi, H., Valentin, D., Edelman, B.: More about the difference between men and women: evidence from linear neural network and the principal-component approach. Perception 24(1993), 539–539 (1995)
Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: Sexnet: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems, vol. 3, pp. 572–577 (1991)
Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: A comparison study. In: Proceedings of Sixth IEEE Workshop on Applications of Computer Vision (WACV 2002), pp. 165–170 (2002)
Jain, A., Huang, J., Fang, S.: Gender identification using frontal facial images. In: IEEE International Conference on Multimedia and Expo., ICME 2005, p. 4 (2005)
Buchala, S., Davey, N., Gale, T.M.: Analysis of linear and nonlinear dimensionality reduction methods for gender classification of face images. International Journal of Systems Science 36(14), 931–942 (2005)
Ojala, T., Pietikainen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31(11), 1422–1427 (2010)
Ylioinas, J., Hadid, A., Pietikäinen, M.: Combining contrast information and local binary patterns for gender classification. Image Analysis, 676–686 (2011)
Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters 33(4), 431–437 (2012)
Xia, B., Sun, H., Lu, B.-L.: Multi-view Gender Classification based on Local Gabor Binary Mapping Pattern and Support Vector Machines. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 3388–3395 (2008)
Wu, T.-X., Lian, X.-C., Lu, B.-L.: Multi-view gender classification using symmetry of facial images. Neural Computing and Applications, 1–9 (May 2011)
Zheng, J., Lu, B.-L.: A support vector machine classifier with automatic confidence and its application to gender classification. Neurocomputing 74(11), 1926–1935 (2011)
Fu, X., Dai, G., Wang, C., Zhang, L.: Centralized Gabor gradient histogram for facial gender recognition. In: 2010 Sixth International Conference on Natural Computation (ICNC), vol. 4, pp. 2070–2074 (2010)
Shobeirinejad, A., Gao, Y.: Gender Classification Using Interlaced Derivative Patterns. In: 2010 20th International Conference on Pattern Recognition, pp. 1509–1512 (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Rojas-Bello, R.N., Lago-Fernandez, L.F., Martinez-Munoz, G., Sdnchez-Montanes, M.A.: A comparison of techniques for robust gender recognition. In: 2011 18th IEEE International Conference on Image Processing, pp. 561–564 (2011)
Demirkus, M., Toews, M., Clark, J.J., Arbel, T.: Gender classification from unconstrained video sequences. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 55–62 (2010)
Laurenz, W., Fellous, J.-M.F., Kruger, N., von der Malsburg, C.: Face recognition and gender determination. In: Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp. 92–97 (1995)
Leng, X.M., Wang, Y.D.: Improving generalization for gender classification. In: 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 1656–1659 (2008)
Wang, J.G., Li, J., Lee, C.Y., Yau, W.Y.: Dense SIFT and Gabor descriptors-based face representation with applications to gender recognition. In: 2010 11th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1860–1864 (December 2010)
Aghajanian, J., Warrell, J., Prince, S.J.D., Rohn, J.L., Baum, B.: Patch-based within-object classification. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1125–1132 (2009)
Lee, P.H., Hung, J.Y., Hung, Y.P.: Automatic Gender Recognition Using Fusion of Facial Strips. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1140–1143 (2010)
Li, Z., Zhou, X.: Spatial gaussian mixture model for gender recognition. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 45–48 (2009)
Rai, P., Khanna, P.: Gender classification using Radon and Wavelet Transforms. In: 2010 International Conference on Industrial and Information Systems (ICIIS), pp. 448–451 (2010)
Ueki, K., Kobayashi, T.: Gender Classification Based on Integration of Multiple Classifiers Using Various Features of Facial and Neck Images. Information and Media Technologies 3(2), 479–485 (2008)
Gallagher, A.C., Chen, T.: Understanding images of groups of people. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 256–263 (2009)
Buchala, S., Loomes, M.J., Davey, N., Frank, R.J.: The role of global and feature based information in gender classification of faces: a comparison of human performance and computational models. International Journal of Neural Systems 15, 121–128 (2005)
Lapedriza, A., Marin-Jimenez, M.: Gender recognition in non controlled environments. In: 18th International Conference on Pattern Recognition, ICPR 2006, 2006, vol. 3, pp. 834–837 (2006)
Xu, Z., Lu, L., Shi, P.: A hybrid approach to gender classification from face images. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)
Boyd, J.E., Little, J.J.: Biometric Gait Recognition. In: Biometrics, pp. 19–42 (2005)
Boulgouris, V., Hatzinakos, D., Plataniotis, K.N.: Gait Recognition: A challenging signal processing technology for biometric identification. IEEE Signal Processing Magazine, 78–90 (November 2005)
Hu, M., Wang, Y., Zhang, Z., Wang, Y.: Combining Spatial and Temporal Information for Gait Based Gender Classification. In: 2010 20th International Conference on Pattern Recognition, pp. 3679–3682 (2010)
Makihara, Y., Mannami, H., Yagi, Y.: Gait Analysis of Gender and Age Using a Large-Scale Multi-view Gait Database. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 440–451. Springer, Heidelberg (2011)
Lu, J., Tan, Y.-P.: Uncorrelated discriminant simplex analysis for view-invariant gait signal computing. Pattern Recognition Letters 31(5), 382–393 (2010)
Chang, P.-C., Tien, M.-C., Wu, J.-L., Hu, C.-S.: Real-time Gender Classification from Human Gait for Arbitrary View Angles. In: 2009 11th IEEE International Symposium on Multimedia, pp. 88–95 (2009)
Chen, L., Wang, Y., Wang, Y.: Gender Classification Based on Fusion of Weighted Multi-View Gait Component Distance. In: 2009 Chinese Conference on Pattern Recognition, pp. 1–5 (2009)
Huang, G., Wang, Y.: Gender Classification Based on Fusion of Multi-view Gait Sequences. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 462–471. Springer, Heidelberg (2007)
Kozlowski, L.T., Cutting, J.E.: Recognizing the sex of a walker from a dynamic point-light display. Attention, Perception, & Psychophysics 21(6), 575–580 (1977)
Davis, J.W., Gao, H.: An expressive three-mode principal components model for gender recognition. Journal of Vision 4(5), 362–377 (2004)
Nixon, M.S., Carter, J.N.: Automatic Recognition by Gait. Proceedings of the IEEE 94(11), 2013–2024 (2006)
Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Transactions on Image Processing 18(8), 1905–1910 (2009)
Yoo, J.-H., Hwang, D., Nixon, M.S.: Gender Classification in Human Gait Using Support Vector Machine. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 138–145. Springer, Heidelberg (2005)
Hu, M., Wang, Y., Zhang, Z., Zhang, D.: Gait-based gender classification using mixed conditional random field. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics 41(5), 1429–1439 (2011)
Lee, L., Grimson, W.: Gait analysis for recognition and classification. In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 155–162 (2002)
Martin-Felez, R., Mollineda, R.A., Sanchez, J.S.: Towards a More Realistic Appearance-Based Gait Representation for Gender Recognition. In: 2010 20th International Conference on Pattern Recognition, pp. 3810–3813 (2010)
Zhang, D., Wang, Y.: Investigating the separability of features from different views for gait based gender classification. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 3–6 (2008)
Liu, Y., Collins, R., Tsin, Y.: Gait Sequence Analysis Using Frieze Patterns. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 657–671. Springer, Heidelberg (2002)
Shan, C., Gong, S., McOwan, P.W.: Fusing gait and face cues for human gender recognition. Neurocomputing 71(10-12), 1931–1938 (2008)
Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(2), 316–322 (2006)
Liu, Z., Sarkar, S.: Simplest Representation Yet for Gait Recognition: Averaged Silhouette. Pattern Recognition, no. 130768
Li, X., Maybank, S.J., Yan, S., Tao, D., Xu, D.: Gait Components and Their Application to Gender Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(2), 145–155 (2008)
Chen, L., Wang, Y., Wang, Y., Zhang, D.: Gender Recognition from Gait Using Radon Transform and Relevant Component Analysis. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 92–101. Springer, Heidelberg (2009)
Bagher Oskuie, F., Faez, K.: Gender Classification Using a Novel Gait Template: Radon Transform of Mean Gait Energy Image. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part II. LNCS, vol. 6754, pp. 161–169. Springer, Heidelberg (2011)
Chen, X.T., Fan, Z.H., Wang, H., Li, Z.Q.: Automatic Gait Recognition Using Kernel Principal Component Analysis. In: Science and Technology (2010)
Handri, S., Nomura, S., Nakamura, K.: Determination of Age and Gender Based on Features of Human Motion Using AdaBoost Algorithms. International Journal of Social Robotics 3(3), 233–241 (2011)
Chang, C.Y., Wu, T.H.: Using gait information for gender recognition. In: 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 1388–1393 (2010)
Bourdev, L., Maji, S., Malik, J.: Describing People: A Poselet-Based Approach to Attribute Classification. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1543–1550 (2011)
Cao, L., Dikmen, M., Fu, Y., Huang, T.S.: Gender recognition from body. In: Proceeding of the 16th ACM International Conference on Multimedia, pp. 725–728 (2008)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)
Collins, M., Zhang, J., Miller, P.: Full body image feature representations for gender profiling. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1235–1242 (2009)
Guo, G., Mu, G., Fu, Y.: Gender from Body: A Biologically-Inspired Approach with Manifold Learning. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part III. LNCS, vol. 5996, pp. 236–245. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ng, C.B., Tay, Y.H., Goi, BM. (2012). Recognizing Human Gender in Computer Vision: A Survey. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-32695-0_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32694-3
Online ISBN: 978-3-642-32695-0
eBook Packages: Computer ScienceComputer Science (R0)