Skip to main content

Exploiting Independent Relationships in Multiagent Systems for Coordinated Learning

  • Conference paper
PRICAI 2012: Trends in Artificial Intelligence (PRICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7458))

Included in the following conference series:

  • 2910 Accesses

Abstract

Creating coordinated multiagent policies in an environment with uncertainties is a challenging issue in the research of multiagent learning. In this paper, a coordinated learning approach is proposed to enable agents to learn both individual policies and coordinated behaviors by exploiting independent relationships inherent in many multiagent systems. We illustrate how this approach is employed to solve coordination problems in robot navigation domains. Experimental results of different scales of domains prove the effectiveness of our learning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Melo, F.S., Veloso, M.: Decentralized MDPs with sparse interactions. Artif. Intel. 175, 1757–1789 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yu, C., Zhang, M., Ren, F.: Coordinated Learning for Loosely Coupled Agents with Sparse Interactions. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 392–401. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. De Hauwere, Y.M., Vrancx, P., Nowé, A.: Learning multi-agent state space representations. In: AAMAS 2010, pp. 715–722. IFAAMAS, Richland (2010)

    Google Scholar 

  4. Allen, M., Zilberstein, S.: Complexity of decentralized control: Special cases. In: Adv. Neural Inform. Proc. Systems, vol. 22, pp. 19–27 (2009)

    Google Scholar 

  5. Spaan, M., Melo, F.S.: Interaction-driven Markov games for decentralized multiagent planning under uncertainty. In: AAMAS 2008, pp. 525–532. IFAAMAS, Richland (2008)

    Google Scholar 

  6. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. C. Appl. Re. 38(2), 156–172 (2008)

    Article  Google Scholar 

  7. Roth, M., Simmons, R., Veloso, M.: Exploiting factored representations for decentralized execution in multiagent teams. In: AAMAS 2007, pp. 469–475. ACM Press, New York (2007)

    Google Scholar 

  8. Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforcement learning. In: AAMAS, vol. 13(2), pp. 197–229. Springer, Heidelberg (2006)

    Google Scholar 

  9. Kok, J.R., Hoen, P., Bakker, B., Vlassis, N.: Utile coordination: Learning interdependencies among cooperative agents. In: CIG 2005, pp. 29–36. IEEE Press, New York (2005)

    Google Scholar 

  10. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Re. 27(4), 819–840 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: ICML, pp. 227–234 (2002)

    Google Scholar 

  12. Boutilier, C.: Planning, learning and coordination in multiagent decision processes. In: TARK, pp. 195–210 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, C., Zhang, M., Ren, F. (2012). Exploiting Independent Relationships in Multiagent Systems for Coordinated Learning. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32695-0_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32694-3

  • Online ISBN: 978-3-642-32695-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics