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Abstract

Most image labeling problems such as segmenta-
tion and image reconstruction are fundamentally
ill-posed and suffer from ambiguities and noise.
Higher order image priors encode high level struc-
tural dependencies between pixels and are key to
overcoming these problems. However, these pri-
ors in general lead to computationally intractable
models. This paper addresses the problem of dis-
covering compact representations of higher order
priors which allow efficient inference. We propose
a framework for solving this problem which uses
a recently proposed representation of higher or-
der functions where they are encoded as lower en-
velopes of linear functions. Maximum a Poste-
rior inference on our learned models reduces to
minimizing a pairwise function of discrete vari-
ables, which can be done approximately using
standard methods. Although this is a primarily
theoretical paper, we also demonstrate the prac-
tical effectiveness of our framework on the prob-
lem of learning a shape prior for image segmenta-
tion and reconstruction. We show that our frame-
work can learn a compact representation that ap-
proximates a prior that encourages low curvature
shapes. We evaluate the approximation accuracy,
discuss properties of the trained model, and show
various results for shape inpainting and image seg-
mentation.

1 Introduction

Most computer vision problems can be formulated
in terms of estimating the values of hidden vari-
ables from a given set of observations. In such a
setting, probabilistic models are applied to repre-
sent the prior knowledge about hidden variables
and their statistical relationship with observed
variables.

A number of models encoding prior knowledge
about scenes have been proposed in computer vi-
sion. The most popular ones have been in the
form of a pairwise Markov Random Field (MRF).
A random field is a strictly positive probability
distribution of a collection of random variables.
Markov Random Field (MRF) additionally satis-
fies some (or none) Markov (conditional indepen-
dence) properties [2]. An important characteristic

Figure 1: (a) Input image (area for completion of
starfish is shown in blue). (b) The starfish was in-
teractively segmented from the image. Then the
three arms of the starfish, which touch the im-
age borders, were completed with an 8-connected
pairwise MRF which encodes a standard length
prior. Note, with this prior no pixels in the
blue completion area were assigned to the starfish
arms. (c) Completion of the shape of the three
starfish arms was done with our compact-higher-
order prior which models curvature. (d) Finally,
texture was added fully automatically using [1].

of an MRF is the factorization of the distribution
into a product of factors. Pairwise MRFs can be
written as a product of factors defined over two
variables at a time. For discrete variables, this en-
ables non-parametric representation of factors and
the use of efficient optimization algorithms for ap-
proximate inference of the Maximum-a-Posteriori
(MAP) solution. However, because of their re-
stricted pairwise form, the model is not able to
encode many types of powerful structural prop-
erties of images. Curvature is one such property
which is known to be extremely helpful for inpaint-
ing (see figure 1), segmentation, and many other
related problems.

Higher-order Priors There has been a lot of
research into priors based on high-level structural
dependencies between pixels such as curvature.
These priors can be represented in the probabilis-
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Figure 2: (a) A given cost function for curvature, which we want to approximate. (b) Our method
learns a large set of ‘soft’ pattern-based potentials which implicitly model the curvature cost. Our learned
MRF model has a higher-order 8× 8 pattern-based potential at each pixel-location. Our model implicitly
selects at each position the best-fitting pattern for a labeling. Intuitively, a pattern fits well (has low
cost) if all foreground pixels match to blue pattern weights and all background pixels match to red pattern
weights. Pixels which match to green pattern weights do not contribute and may be either background
or foreground. The last two patterns encode the fact that if the higher-order potential is defined on top
of a non-boundary location (all 4 center pixels are foreground or background), then the curvature cost
is 0, i.e. is ignored. (c) An example demonstrating the curvature cost computed by our pattern based
approximation at different parts of the object boundary. Circle radius correspond to the assigned cost.

tic model using factors which may depend on more
than two variables at a time. The largest num-
ber of variables in a factor is called the order of
the probabilistic model. Higher-order factors de-
fined on discrete variables are computationally ex-
pensive to represent. In fact, the memory and
time complexity for inferring the MAP solution
with general inference algorithms grows exponen-
tially with the order, and thus has limited the use
of such models. The situation is a bit different
for parametric models with continuous variables.
Higher-order prior models such as Product of Ex-
perts (PoE) [3] or Field of Experts (FoE) [4] are
differentiable in both parameters and hidden vari-
ables. These models thus enable inference using
local gradient descent, and have led to impressive
results for problems such as image restoration and
optical flow.

Recent research on discrete higher-order models
has focused on identifying families of higher-order
factors which allow efficient inference. The factors
can be categorized into 3 broad categories: (a) Re-
ducable factors, which allow MAP inference to be
reduced to the problem of minimizing a pairwise
energy function of discrete variables with the ad-
dition of some auxiliary variables [5, 6, 7, 8, 9],

(b) Message-enabled factors, which allow efficient
message computation and thus allow inference us-
ing message passing methods such as Belief Prop-
agation (BP) and Tree Reweighted message pass-
ing (TRW) [10, 11, 12], and (c) Constraint factors,
which impose global constraints that can be im-
posed efficiently in a relaxation framework [13, 14].

Pattern-based Representation Pattern and
lower-envelope based representations proposed
in [5, 11, 9] can represent some families of Reduca-
ble factors. The higher-order potentials of [11, 9]
are defined by enumerating important configura-
tions (patterns) in a local window. The model
of [9] additionally enables deviations from encoded
patterns, by using linear weighting functions. The
above models are generalized by the representa-
tion proposed in [5] which encodes higher-order
functions as lower (or upper) envelopes of linear
(modular) functions of the variables. The com-
plexity of representing and performing inference
depends on the number of linear functions (or pat-
terns) used for representing the higher-order fac-
tor. A number of higher-order priors can be en-
coded using few linear functions (or patterns) and
thus allow efficient inference. However, the use
of a general higher-order prior would require ex-
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ponential (in the order of the factor) number of
linear functions (or patterns).

Our Contribution This paper addresses the
problem of discovering a compact representation
of a general higher-order factor. More specifically,
given a particular higher-order factor, we try to
find the linear-envelope representation which best
approximates it. Given a set of training examples
of labeling and their corresponding desired costs,
we find parameters of a linear-envelope represen-
tation that matches these costs. While the prob-
lem is difficult, we propose a simple yet effective
algorithm.

We demonstrate the efficacy of our method
on the problem of finding a compact ‘curvature
prior’ for object boundaries. This prior encourages
smooth boundaries by assigning a high cost to high
curvature shape and a low cost of low curvature
shapes. Given a set of training shapes, we find pa-
rameters of a linear-envelope representation that
closely match their pre-specified curvature based
cost1. Figure 2 illustrates our discovered model.
We then use the discovered higher-order factors in
the problems of object segmentation and comple-
tion. The experimental results demonstrate that
incorporation of these priors leads to much better
results than those obtained using low-order (pair-
wise MRF) based models (see figure 1) and other
state-of-the-art curvature formulations.

An outline of the paper follows. In section
2, we provide the notation, define the higher-
order model, and explain the lower-envelope rep-
resentation of higher-order factors. Section 3 re-
views research on using curvature priors for label-
ing problems. Section 4 explains how we learn a
lower-envelop representation of a curvature based
higher-order prior model. Section 5 discusses the
techniques we used to perform MAP inference in
the pairwise model corresponding to the discov-
ered higher-order model. Section 6 describes our
experimental setup and provides the results. We
conclude by summarizing our framework and list-

1The purpose of this exercise is only to demonstrate the
power of our representation scheme. A more difficult prob-
lem would be to learn the linear envelope model in an unsu-
pervised way from examples of segmentations. We do not
address this problem in this paper.

ing some directions for future work in Section 7.

2 Higher-order Model Representation

We consider a set of pixels V = {1 . . . NX} ×
{1 . . . NY } and a binary set of labels L = {0, 1},
where 1 means that a pixel belongs to the fore-
ground (shape) and 0 to the background. Let
x : V → L be the labeling for all pixels with in-
dividual components denoted by xv, v ∈ V. Fur-
thermore, let V (h) ⊂ V denote a square window
of size K ×K at location h, and U is the set of all
window locations. Windows are located densely
in all pixels. More precisely, all possible K × K
windows are considered which are fully inside the
2D-grid V (fig. 3 illustrates boundary locations).
Let xV (h) : V (h)→ L denote a restriction of label-
ing x to the subset V (h).

We consider distribution of the form p(x) ∝
exp−E(x) with the following energy function:

E(x) =
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) +
∑
h∈U

Eh(x),

(1)
where notation uv stands for ordered pair (u, v),
θv : L → R and θuv : L2 → R are unary and pair-
wise terms, E ⊂ V×V is a set of pairwise terms and
Eh are higher-order terms. We consider the higher
order terms Eh of the following form (equivalent
to [9])

Eh(x) = min
y∈P

(
〈wy,xV (h)〉+ cy

)
. (2)

This term is the minimum (lower envelope) of
several modular functions of xV (h). We call this
model a maxture by the analogy with the mixture
model discussed below. We refer to individual lin-
ear functions 〈wy,xV (h)〉+ cy as “soft” patterns2.

Here wy ∈ RK
2

is a weight vector and cy ∈ R is a
constant term for the pattern. Vector wy is of the
same size as the labeling patch xV (h) and it can be
visualized as an image (see fig. 2(b)). The variable
y ∈ P is called a pattern-switching variable. It is
a discrete variable from the set P = {0, ..., NP }.

2The name “soft” refers to the fact that weights wy can
take arbitrary values. This is in contrast to other models,
[9, 11], which constrain the weights wy to certain values, as
discussed later.
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We let the pattern which corresponds to y = 0
have the associated weights w0 = 0. This pattern
assigns a constant value c0 to all labelings xV (h)

and it ensures that Eh(x) ≤ c0 for all x. It will be
needed to express models [9, 11] in the form of (2),
as these models explicitly define a cut-off value. It
is also used in our curvature model, where it repre-
sents the maximal cost fmax of the curvature cost
function.

The minimization problem of energy (1) ex-
presses as

min
x

[
E0(x) +

∑
h∈U

min
y∈P

(
〈wy,xV (h)〉+ cy

)]
, (3)

where unary and pairwise terms are collected into
E0. The problem can also be written as a mini-
mization of a pairwise energy

min
x∈LV

y∈PU

[
E0(x) +

∑
h

〈wyh ,xV (h)〉+ cyh
]
, (4)

where y : U → P is the concatenated vector of all
pattern switching variables3. Clearly, problem (4)
is a minimization of a pairwise energy function of
discrete variables x,y.

Problem (4) is NP-hard in general. A sub-
class [6] where minimization of (1) is solvable in
polynomial time is described in Appendix A. How-
ever, this class is very restrictive and is not suit-
able for our purpose. In the general case a num-
ber of approximate MAP inference techniques for
pairwise energies can be used, as discussed in sec.
5.

2.1 Pattern-based model

Let us relate the above model to the “hard”
pattern-based model defined in [11] (and also spe-
cial case in [9]). In [11] a potential of the following
form is used:

Eh(x) =

{
c̃y if ∃y ∈ {1 . . . NP } xV (h) = py

c̃0 otherwise
.

(5)
This potential assigns cost c̃y if the labeling

matches exactly pattern py ∈ LK2
for some y ∈

3We refer to components of y by yh, while y usually
denotes an independent bound variable.

{1 . . . NP } and cost c̃0 if none of the patterns are
matched. The set of labels for this model is not
necessarily binary. For binary labels (5) can be
rewritten in the form (2) by setting

wy,v =

{
−B, pyv = 1

+B, pyv = 0

cy = c̃y +B
∑

v p
y
v

w0,v = 0
c0 = c̃0 ,

(6)

where B is a sufficiently large constant. This
is a restricted model since deviations from the
“hard” patterns are not allowed, in contrast to our
model (2). However, this restricted model allows
for an alternative optimization approach which
was proposed in [11] and seems to correspond to
a tighter relaxation than the standard relaxation
for the pairwise model (4). Also, the hard pattern
potential model [11] is too restrictive in the fol-
lowing sense. Function (2), as well as the special
case (5), can exactly represent an arbitrary func-
tion of discrete variables xV (h) if we allow 2|V (h)|

patterns. Obviously, in practice if |V (h)| is large
such an approach becomes computationally infea-
sible. The challenge is therefore to define a good
model with a small number of patterns, for which
case model (2) seems clearly a better choice.

2.2 Relation to Mixture Model

Minimization of a pairwise energy with auxiliary
variables (4) can be interpreted as MAP infer-
ence in a pairwise MRF. The question arise then:
why do we talk about higher order terms, rather
than just introducing more hidden variables in a
pairwise model? To answer this question we need
to look at the associated probability distributions
and the estimation problems. Here, for simplic-
ity, we ignore unary and pairwise terms of E0 and
also ignore the observable variables. Let y be aux-
iliary hidden variables in the following, new pair-
wise model

p(x,y) ∝
∏
h∈U

exp(−〈wyh ,xV (h)〉 − cyh) . (7)
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The model of x is then implied to be

pmix(x) ∝
∑
y∈PU

∏
h∈U

exp(−〈wyh ,xV (h)〉 − cyh)

=
∏
h∈U

∑
y∈P

exp(−〈wy,xV (h)〉 − cy).

(8)

It can be seen that factors in this model are mix-
tures of exponential distributions. The problem of
MAP inference of x, taking the logarithm, can be
written as

arg max
x

∑
h

⊕
y∈P

1(−〈wy,xV (h)〉 − cy), (9)

where we define log-sum-exp operation ⊕β as

a⊕β b =
1

β
log(eβa + eβb), (10)

which is commutative and associative binary op-
eration, so

⊕
y∈P

βay is also unambiguously defined.

The problem (9) is a discrete optimization with
difficult objective, so by introducing auxiliary hid-
den variables we arrived at a complicated inference
problem. A heuristic could be used to infer x by
solving the joint MAP in x and y and then to
discard the estimate of y, this would lead to the
optimization problem of the desired form:

arg min
x,y

∑
h

(〈wyh ,xV (h)〉+ cyh). (11)

So we could have learned a mixture model and
made a wrong use of it by replacing inference
with (11). We prefer instead to state the model as

pmax(x) =
∏
h

max
y∈P

exp(−〈wy,xV (h)〉 − cy), (12)

where the factors are maxtures of exponential dis-
tributions. Clearly, the model corresponds to (4)
by rewriting it as

= exp
{
−
∑
h

min
y∈P

(〈wy,xV (h)〉+ cy)
}
. (13)

The MAP inference of x in this model directly cor-
respond to (11). So this is a much cleaner corre-
spondence of the model to the estimation problem.

In fact, there is a smooth transition between the
two models. It is know that limβ→∞ a ⊕ βb =
max(a, b), which says that as distributions get
sharper, their mixture turns into a maximum. It
is also easy to see that under this limit the model
pmix transits to pmax and so is the corresponding
MAP x problem.

3 Curvature priors for Image Labeling

We will evaluate the usefulness of our curvature
prior on the closely related problems of image seg-
mentation and shape inpainting. Given an image
region with a lack of observations, a good segmen-
tation model should complete the segmentation in
this region from the evidence outside of the re-
gion. This shape inpainting problem is related to
inpainting of binary images which has been ap-
proached in the continuous setting with several
curvature-related functionals [15, 16]4.

Image labeling with curvature regularization is
an important topic of research, and both continu-
ous and discrete formulations for the problem have
been proposed. Continuous formulations offer ac-
curate models, but they rely on numerical schemes
which have to deal with highly nonlinear functions
and need a good initialization to converge to a
good local minimum of the cost functional5. Dis-
crete methods for image labeling with curvature
regularization build on quantization and enumer-
ation of boundary elements. Until recently, they
were applied only in restricted scenarios where it
is possible to reduce the problem to a search of
the minimal path or minimum ratio cycle [18].
These cases enjoy global optimality, however they
restrict the topology or do not allow for arbitrary
regional terms.

Recently, [19] proposed a discrete method for
a general setting. This method is able to find
globally optimal solutions for difficult segmenta-
tion problems. They formulate the problem as In-
teger Linear Programming (ILP), where variables
are indicators of edge and region elements, while

4There is a vast literature on the general image inpaint-
ing problem, however these techniques, especially exemplar-
based ones, do not extend to image segmentation problem,
and are not relevant in the context of this paper.

5For instance, [17] works with discretized Euler-
Lagrange equations of the 4th order.
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Figure 3: (a) Continuous shape and its discretiza-
tion. Filled circles show boundary locations.
Larger blue window illustrates V (h) at location h.
(b,c) Foreground and background patterns: green
wy,v = 0, red: wy,v = +B, blue: wy,v = −B,
constants cy are −4B and +4B respectively.

constraints make sure that these variables are con-
sistent and do correspond to a shape. However,
this method quantizes the directions of boundary
elements, which, as we show in the experiment sec-
tion, may result in large errors in the final segmen-
tation. The complexity of the model [19] grows
very fast with the number of directions, and it
is not entirely clear how to build a cell complex
with the required properties for more directions
than [19] considers.

A recent work [20] claims to give fast optimal so-
lution for curvature regularization. However, their
model is a crude approximation to the curvature
functional. Its 4-neighborhood variant essentially
penalizes the number of “corners” in the segmen-
tation – locations where a 2×2 window has 3 pix-
els foreground and 1 background or vice-versa. It
assigns zero penalty for horizontal and vertical
boundaries but diagonal boundaries have maxi-
mal penalty. The 8-neighborhood variant allows
for diagonal lines at zero cost but penalizes ver-
tical and horizontal lines. Our model with 2×2
windows can also implement the 4-neighborhood
model [20]. However, as we argue, a larger window
is necessary to capture the curvature of a shape
represented by binary pixel labeling.

4 Learning a Curvature Cost Model

Suppose we are given a shape S ⊂ R2 such that
we can calculate the curvature κ at every point
of the boundary, ∂S. Let f(κ) ≥ 0 be a curva-
ture cost function, which defines a desired penalty
on curvature, in this paper we consider f(κ) =
min(κ2, fmax). Let the total cost of the shape be

Figure 4: Problem definition and motiva-
tion of large-sized windows. Examples above
show discrete labelings on a pixel grid with a cor-
responding red continuous curve. Note, there are
infinitely many continuous curves which give rise
to the same discrete labelling - two examples are
given in (a) and (b). The red curve in (b) is prob-
ably the one with lowest curvature given the dis-
crete labelling. Our goal is to find an energy func-
tion which maps every discrete labelling to the cor-
responding cost of the continuous curvature with
lowest curvature. (c) makes the important point
that larger sized windows have inherently a better
chance of predicting well the curvature at the cen-
ter of the window. In (c) the green window is of
size 3x3, while in (b) it is of size 5x5. The un-
derlying discrete labelling is identical in both cases
and the red curve is the optimal (lowest curvature)
continuous curve given the window. The crucial
point is that the curvature of the continuous curve,
at the center of the window, is very different in (b)
and (c). Note, this problem is to some extend miti-
gated by the fact that the total cost of segmentation
is the sum of costs along the boundary.∫
∂S f(κ)dl. Our goal is to approximate this inte-

gral by the sum ∑
h∈U

Eh(x), (14)

where functions Eh operate over a discretized rep-
resentation of the shape, x, and are of the form (2)
with weights w, c. Here w and c denote the con-
catenated vectors of all weights wy and cy, respec-
tively. The learning problem is to determine the
pattern weights w, c such that the approximation
is most accurate. Since the mapping of continuous
to discrete curves is a many-to-one mapping, we
further formalize our exact goal in figure 4. In the
figure we also motivate the important aspect that
larger windows are potentially superior.
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We first restrict the sum in (14) to take into
account only boundary locations. We call h a
boundary location for shape x if the 2×2 window
at h contains some pixels which are labeled fore-
ground as well as some pixels which are labeled
background, as illustrated in fig. 3. We constrain
all soft patterns to be non-negative (〈wy, x〉+cy ≥
0) and introduce two special patterns (fig. 3b,c),
which have cost 0 for locations where the 2×2
window at location h contains only background
or foreground pixels. These patterns make Eh(x)
vanish over all non-boundary locations, therefore
such locations do not contribute to the sum (14).
The learning task is now to determine Eh(x), such
that at each boundary location the true cost f(κ)
is approximated. In this way (14) does correspond
to the desired integral if we were to neglect the
fact that the number of boundary locations does
only approximate the true length of the boundary.
Note, the number of boundary locations does cor-
respond to the “Manhattan” length of the bound-
ary. We will come back to this problem in sec. 6.

Point-wise learning procedure. Let us as-
sume that in a local K×K window, shapes of
low curvature can be well-approximated by sim-
ple quadratic curves6. The idea is to take many
examples of such shapes and fit Eh(x) to approx-
imate their cost. We consider many quadratic
shapes (Si)Ni=1 in the window K × K and derive
their corresponding discretization on the pixel grid
(xi)Ni=1. Each continuous shape has an associated
curvature cost f i = f(κi) at the central boundary
location. We formulate the learning problem as
minimization of the average approximation error:

arg minw,c
∑

i |Eh(xi)− f i|,

s.t.

{
w0 = 0, c0 = fmax

Eh(x) ≥ 0 ∀x
(15)

where the first constraint represents the special
implicit pattern (w0, c0 = fmax), which ensures
that Eh(x) ≤ fmax. The second constraint makes
sure that cost is non-negative. It is important

6Note, based on our definition in fig. 4 we select
quadratic curves which are likely to be the ones of lowest
curvature (among all curves) for the corresponding discrete
labelling.

for the following reason: the formulation of the
approximation problem does not explicitly take
into account “negative samples”, i.e. labellings
which do not originate from smooth curves, and
which must have high cost in the model. How-
ever, requiring that all possible negative samples
in a K×K window have high cost would make
the problem too constrained. The introduced non-
negativity constraint is tractable and not too re-
strictive. This problem appears difficult, since
Eh(xi) is itself a concave function in the param-
eters w, c. We approach (15) by a k-means like
procedure with a specially constructed initializa-
tion:

Alg. 1. Iterative Factor Discovery
Input: xi, f i, w, c
Repeat till convergence or maximum itera-
tions:
1. For all training images i find best matching
patterns yi = arg min

y
[〈wy,x

i〉+ cy]

2. For all y ∈ 1 . . . NP refit (wy, cy):

(wy, cy) = arg min
wy ,cy
ξ

∑
i|yi=y

|〈wy,x
i〉+ cy − f i|

s.t.


ξv ≤ wy,v
ξv ≤ 0∑

v ξv + cy ≥ 0

(16)
The refitting step (16) is a linear optimiza-

tion which can be solved exactly. The constraint
in (16) is an equivalent representation of the con-
straint 〈wy,x〉+ cy ≥ 0 ∀x, imposed by (15).

The initialization and results of applying this
learning procedure are discussed in the sec. 6.

5 Inference

We examined several standard MAP inference
techniques for pairwise MRFs, and found the fol-
lowing two-stage procedure to work best for our
problem. First, the TRW-S algorithm[21, 22] is
run for a fixed number of iterations. Then an
initial solution is obtained by rounding the tree
min-marginals. Second, a Block-ICM procedure
improves on this initial solution.

7



5.1 TRW-S

In contrast to many other pairwise MRFs encoun-
tered in computer vision, our model has a very
large number of pairwise links. We developed
the following memory-efficient implementation of
TRW-S for models with pairwise interactions be-
tween variables with few states and variables with
many states. For an image of size NY×NX and
model with NP patterns of size K×K, there are in
total O(NYNXK

2) pairwise terms needed to rep-
resent the pattern potentials (pairwise energy (4)
can be illustrated as a bipartite graph in fig. 5(a)).
The algorithm in [21] needs to keep a message
(vector of size NP ) for each edge. This makes
the original procedure [21] extremely memory in-
tensive. Since each pixel has only two labels and
there are NP labels for the pattern switching vari-
able, we can improve on memory requirement with
a little computation overhead. We make the fol-
lowing modification to the implementation [21,
fig.3]. We store reparametrized unaries, θ̂s(xs)
and θ̂h(yh), (O(NYNXNP ) memory) and messages
only in the direction patterns→pixels, mhv(xv),
(O(NYNXK

2) memory). When the reverse mes-

  

(a) (b)

Figure 5: (a) Graphical model for the energy (4).
(b) Pairwise terms connecting pixel labeling xv
and pattern-switching variable yh. Circles show
possible states: two states for xv and NP states
for yh.

sage is requested by the algorithm it is computed
on the fly using the equation

mvh(yh) = min
xv

[
γstθ̂s(xs)−mhv(xv)+θvh(xv, yh)

]
,

(17)
which is O(NP ) computations. To completely
specify the algorithm we have to choose the or-
dering of variables and the parameters γ. We

can specify the ordering corresponding to longer
chains, which potentially provide a faster conver-
gence or the ordering where all x precede all y,
corresponding to short 1-edge chains, which makes
the computation paralelizable. The parameters γ
are selected following the recommendation in [21].

This modified version of TRW-S requires only
O(NYNX (K2 + NP )) memory and runs in
O(NYNXK

2NP ) time per full-pass iteration. In
practice this results in about 5 seconds per itera-
tion for an image of size 158×128, however a signif-
icant number of iterations was required to archive
good results (e.g. up to 4000), which is a known
issue for dense graphs [23].

5.2 Block-ICM

It often happens that the tree min-marginals of
TRW-S for some pixels are “indecisive”, i.e. pos-
sibly many different labellings have a low energy.
In this case the solution picked by our pixel-
independent rounding schemes may be rather
poor. We found that further local improvements
can significantly decrease the energy. Block-ICM
tries to improve the current labeling x by switch-
ing states of a small block of k variables at a
time. Obviously, its complexity grows exponen-
tially in k, hence k must be low (we use k=6).
During Block-ICM, the blocks are selected densely
around the current boundary of x. For an image
of size 158×128 Block-ICM needs about 3 minutes
to converge.

5.3 LP relaxation

TRW-S is a suboptimal dual solver for linear pro-
gram relaxation of the discrete pairwise energy
minimization. The relaxation (see e.g . [24] for an
overview) is obtained by linearizing objective (4)
and dropping the integrality constraints. In par-
ticular, it replaces binary variables xv ∈ {0, 1}
with relaxed variables x̄v ∈ [0, 1]. The optimal
relaxed labeling may be of interest even when the
relaxation is not tight. However, TRW-S does not
compute the primal relaxed labeling and it may
get stuck in a suboptimal point. On the other
hand solving the full primal LP seems infeasible
since it requires O(NYNXK

2NP ) variables. The
following heuristic can be applied. Note, although,
as we will see, the results may be improved with
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LB = 1.169 E = 3.4

(a) (b) (c)

LB=1.25 E = 2.06

(d) (e) (f)

Figure 6: Restricted LP. (a) Unaries: black –
foreground, white – background, gray – area to
be inpainted; (b) Tree min-marginals of TRW-S:
a thin line shows the 0-level contour; (c) Round-
ing of TRW-S solution; (d) The reduced problem;
(e) Relaxed primal solution of the reduced prob-
lem (with 0-level contour); (f) Rounding of relaxed
primal solution. We also show lower bound (LB)
for relaxation and energie (E) for a discrete solu-
tion. Note, the discrete, ground truth circle has
an energy of E = 1.96, which is still lower than
the best solution found (f).

this heuristic, we did not use it in our experimen-
tal section due to its computational complexity.
The procedure is that we use the dual solution
of TRW-S to greedily fix a larger part of the pri-
mal relaxed variables (both corresponding to pixel
labels x and patterns y). When the tree min-
marginal for a label in a pixel is above a threshold
compared to the minimal tree min-marginal in the
pixel, we fix the corresponding primal variable to
0 and eliminate it. This gives a restricted linear
program, which then can be solved by a primal
method. Example in fig. 6 illustrates these steps
for a circle inpainting problem of the type fig. 8.
We make two observations: first, the restricted LP
attains optimality in a “fractional” relaxed solu-
tion, so there exist an integrality gap and we can
not obtain an optimal discrete solution. Second,
the value of the objective at the optimum of re-
stricted LP is different from the lower bound by

TRW-S, which means that TRW-S has converged
to a sub-optimal dual solution.

Let us also briefly mention on the performance
of Belief Propagation (BP), which we found infe-
rior. We used the variant called sequential (min-
sum) Belief Propagation (BP), obtained from
TRW-S by setting all γ to 1 as described in [21].
In [9] it was reported that BP performs best
for texture denoising with soft pattern-potentials,
while TRW-S performed poorly. For our model
we observed the opposite: BP may produce very
poor results, especially for problems where there
is a large area of uncertainty (shape-inpainting).
Note, we also tried dumping and different re-
ordering heuristics for BP, but without success.
We believe that an interesting direction for future
work is to thoroughly compare various optimiza-
tion schema for various types of soft pattern-based
potentials.

6 Experiments

We performed several kinds of experiments.
1. We discuss the learning procedure of our
model and investigate the approximation quality
it achieves. For the later we generated continuous
shapes, for which the true total cost can be com-
puted precisely, and compared that to our model.
Note, to make inference and learning feasible we
can only use a restricted number of patterns with
limited size. We show that this gives a reason-
able approximation of the desired cost functional.
Note, in theory, by increasing the resolution (size
of patterns) and the number of patterns one may
archive approximation with an arbitrary accuracy.
2. The second set of experiments studies the task
of “shape-inpainting” where the optimal segmen-
tation (shape) has to be inferred, while only a few
boundary conditions are given. It provides a good
way of inspecting our prior shape model and as-
sessing whether it corresponds to our intuitive no-
tion of natural shapes.
3. The next experiment is on standard interac-
tive image segmentation. Here we compare length
versus curvature regularization.
4. Finally, we analyze the properties of the curva-
ture model of [19] and provide some comparison
with our model.
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(a) (b) (c)

(d) (e)

(f)

(g)

Figure 7: Cost Approximation. (a) The performance of Alg. 1 measured in terms of the objective (15).
The red and green dashed curves show training and test error respectively. (b) Point-wise approximation
cost with initial patterns, and (c) point-wise approximation cost after 10 iterations of Alg 1. In both
(b,c): each green point is a test sample; the blue line shows the desired true cost; the green line the mean
approximation cost; and the red lines show 3×standard deviation bounds. (d,e) Approximate total cost
/ length vs. true total cost / length for circles (d) and Fourier shapes (e). (f) Examples of training and
test patches used in (a-c). (g) Examples of discretized shapes for circular shapes and Fourier shapes used
in (d,e).

6.1 Cost approximation

To learn our curvature model we used 96 pat-
terns of size K = 8. For the learning we sampled
N = 10000 random quadratic curves passing close
to the center in a K×K pixel patch (fig. 7(f)). The
initial model is build as follows. We split the train-
ing patches into 32 orientations, using the tangent
of a curve, and also 3 different curvature intervals.
This gives in total 96 bins. For each bin we fit
a separate linear function using step 2 of Alg.1,
which results in an initial set of 96 patterns. We
then run several iterations of Alg.1. The estimated
error of the objective (15) is shown in fig. 7(a). We

see that both training and test error decrease over
time.

The initial and final point-wise cost (i.e. for a
patch) is illustrated in Fig. 7 (b) and (c) respec-
tively. It can be seen that the mean of the ap-
proximated cost is very close to the true cost func-
tion, however, the variance is considerably large.
However, this problem should be mitigated when
the cost is summed up along the full boundary,
as the errors average out. To verify this, we sam-
pled larger shapes for which we can compute the
true total cost exactly and then compared to that
of our model. Fig. 7(d,e) shows this experiment
for two classes of shapes: (d) circular shapes of

10



5 10 15 20 25

Figure 8: Inpainting of a corner and a circle. The
green boxes show the area to be inpainted, where
the size in pixels of the length of green box is be-
low the figures. Pixels in gray show the estimated
solution. Note, the boundary conditions are differ-
ent: right-angle boundary condition (top), circle
boundary condition (bottom).

size 100×100 with random radius (uniformly sam-
pled in [5 50] pixels) and subpixel shift; (e) com-
plex shapes created using Fourier series ρ(α) =
a0 +

∑5
k=1 ak sin(kα) + bk cos(kα) in polar coor-

dinates with random coefficients (a, b). Deriva-
tives, curvature and the total cost integral can be
computed accurately for these shapes. We then
measure the approximation error relative to the
true length of the curve. Figure 7(d,e) shows that
the variance is reduced, especially for shapes with
low average curvature which are pre-dominant.
The plots do also reveal the fact that we consis-
tently overestimate the true curvature cost. This
problem is related to the fact that we approxi-
mate the integral along the boundary by the sum
over boundary locations, which corresponds to the
“Manhattan” length, which is usually higher than
the Euclidean length. While this is not essential
for getting a useful model for the shape prior, we
discuss in Appendix B a way of reducing this error
by adjusting the pattern costs.

6.2 Shape Inpainting

The goal is to reconstruct the full shape, while
only some parts of the shape are visible to the al-
gorithm. This is a useful test to inspect our shape
prior. Let F ⊂ V be the set of pixels restricted to
foreground (shape) and B ⊂ V pixels restricted to
background. The unary terms of (1), θv(xv), are
set to ∞ if label xv contradicts to the constrains
and 0 otherwise. This ensures that the correct
segmentation is inferred in the region F ∪B.

0.024 0.038 0.033 0.036 0.027 0.035 0.038 0.040 0.038
0.024 0.038 0.035 0.038 0.030 0.035 0.043 0.040 0.039

0.057 0.052 0.057 0.058 0.045 0.059 0.056 0.075 0.061
0.042 0.066 0.059 0.066 0.053 0.058 0.065 0.062 0.066

0.074 0.075 0.083 0.077 0.065 0.082 0.083 0.090 0.088
0.060 0.093 0.084 0.096 0.072 0.084 0.098 0.092 0.107

Figure 9: Inpainting with a straight line bound-
ary condition. The green box is of size 8, 16 and
24 pixels respectively from top to bottom. The
numbers show the model cost of the estimated so-
lution (top line) and the cost of the ground truth
(discretized) straight line (bottom line).

In the unknown region V\(F ∪ B) all unaries
are exactly 0. Fig.8,9 show results for different
inpainting problems with various boundary condi-
tions corresponding to inpainting of some simple
shapes. The main conclusion is that all results
look reasonably good. Note, for a tiny circle in
fig. 8(bottom left) the reconstruction looks more
like an oval than a circle. This is an expected re-
sult, and visually acceptable, since the boundary
condition (black pixels) may correspond to either
of the shapes and an oval has a lower cost. Also,
we see that for some line inpainting examples in
fig.9 the result deviates slightly from the ground
truth (straight line). Given that the cost of our so-
lution is almost always lower than the cost of the
ground truth, it is quite likely that the problem is
due to a non-perfect model and not due to a local
minimum of the optimization. As mentioned be-
fore, one way to overcome this problem is to allow
for more patterns. We also tested our algorithm
on inpainting real world images, and compared its
results with those obtained by using a pairwise
Markov Random Field formulation that tries to
reduce the boundary length. The results can be
seen in figures 10 and 1. It can be seen that the
higher-order model that encodes curvature pro-
duces shape completions with smooth boundaries.
An example combining curvature and length pri-
ors is shown in fig. 11.
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Figure 10: Two example for automatic shape com-
pletions of an occluded object. In both cases the
left result is with a pure curvature prior and the
right result with a pure length prior (8-connected).
Note, the yellow curve (and a part of the green
curve) indicate the original user-defined segmen-
tation. Then the user defines the green area. In-
side the green area, the method automatically finds
the shape completion (blue curve).

(a) (b) (c)

Figure 11: Combining length and curvature for
inpainting: (a) pure curvature, (b) curvature +
length, (c) curvature + more length.

6.3 Image Segmentation

We use a simple model for the task of interac-
tive FG/BG image segmentation, similar to [25].
Based on the user brush strokes (fig. 12(a)) we
compute likelihoods using a Gaussian mixture
model (GMM) with 10 components. The differ-
ence of the unaries θv(1) − θv(0) correspond to
the negative log-likelihood ratio of foreground and
background. Fig.12(e) shows results when using a
simple pairwise MRF (8-connectivity), which puts
a prior on the length of the boundary. By vary-
ing the strength of the prior we achieve various
results, however, none of the results is satisfying.
Note, the length prior is, in contrast to [25], not
gradient-sensitive since the legs of the giraffe do
not have an edge with sharp contrast. Results for
our curvature model for various strengths of the
prior are shown in fig.12(f). Note, no additional
length prior is added. We clearly see that the cur-

(a) (b) (c) (d)

(e)

0.15 1.0 1.5 3.0

(f)

2 10 100 >1000
Figure 12: Image segmentation. (a) Image
with foreground (green) and background (blue)
seeds; (b) Color based unary potential costs
(red implies foreground-favoring, blue implies
background-favoring). (c) Detail of segmentation
result from [19] (top) and our result (f,100) (d)
Detail of segmentation [19] and our. (e) Segmen-
tation with length prior (8-connected model) for
various strength of the prior (numbers below fig-
ure). (f) Segmentation with curvature prior (our
model) for various strength of the prior.

vature prior is able to properly segment the legs
of the giraffe, compared to the length prior. In-
creasing the strength of the prior above some limit
(1000) has almost no effect on the smoothness of
the solution, because each local 8×8 window is al-
ready maximally smooth according to the model.
Note, that our result, e.g. fig.12(f,100), is visually
superior to [19], fig. 12(c), despite the fact that
we use a grid with much coarser resolution (see
detailed discussion below).

6.4 Analysis of the model of Schönemann
et al. [19]

The main property of the model of [19] is that
there is a pre-defined set of quantized directions.
For our analysis, we considered a restricted sce-
nario (Fig. 13) where it is evident that the opti-
mal shape has to be described by a path in the
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(a)

(c) (b)

Figure 13: Properties of [19]. In (a,b) the prob-
lem is to find the optimal shape with lowest cur-
vature given the boundary conditions: the 2 end-
points in (a) and 2 terminal edge-elements in (b).
In (a,b) the black line shows an optimal solution
of model [19]. The blue line in (a) is the closest
approximation of a straight line. Note, in both
cases (a,b) the model [19] has multiple solutions:
(a) two solution with each having one corner point;
(b) a family of optimal solutions with each having
4 corner points. (c) Inpaiting results by our model
for the same problem as in (a).

graph. We used a 16-connected graph. For two
consequent edge elements of the boundary, we ap-
proximated the squared curvature as A2 l1+l2

l1l2
, [26]

(functional G2), where A is the angle between the
line segments and l1, l2 their lengths. This is sim-
ilar to [19] but a symmetric form. Another (not
essential) difference of our re-implemtation of [19]
is that they construct edge elements by subdivid-
ing each pixel, whereas we model edge element
by end-points in a discrete grid (where edges can
also intersect). Fig. 13 reveals the problem of dis-
critized directions. We observed that lines at di-
rections which are not perfectly modeled in [19]
(e.g. the line at 1/4 slope in fig. 13(a)) have a
very large approximation error. Indeed, the best
approximation to the line in fig.13(a) has many
small “steps”, whereas the optimal boundary in
the model of [19] makes only one large “step”. We
believe that this effect is the reason for the visual
artifacts in the segmentation result of the giraffe
in fig. 12(c), where the legs are approximated with
a few straight lines.

(a) (b)

Figure 14: (a) Segmentation of the giraffe’s head,
where we show the zero level line of tree min-
marginals. The curvature model smoothes out the
giraff’s ear. (b) Segmentation result with one pat-
tern added (shown in the corner).

6.5 Generic Patterns

As a demonstration of the extendibility of our
model we made the following simple experiment.
The giraff’s ear is smoothed out by our model
(fig. 14(a)), since it is of high curvature and has
weak support in the color model. We included one
additional pattern which fits well to the ear. As
all other patterns, this new pattern is available
in all locations. The segmentation of the head,
fig. 14(b), clearly improves around the ear.

7 Conclusions and Discussion

This paper shows how to compute compact rep-
resentations of higher order priors which enable
the use of standard algorithms for MAP infer-
ence. We have demonstrated our method on
the problem of learning a ‘curvature-based’ shape
prior for image inpainting and segmentation. Our
higher-order shape prior operates on a large set
(neighbourhhod) of pixels and is less sensitive to
discretization artifacts. The applicability of our
method is not limited to 2D image segmentation
and inpainting; it could also be used for 3D com-
pletion. More generally, it can be used to obtain
tractable representations for higher order priors
for general labelling problems such as optical flow,
stereo, and image restoration.

It would be interesting to extend our approach
to incorporate other types of local shape proper-
ties, not necessarily defined by an analytic func-
tion but perhaps by exemplars. Such a general-
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ization would very likely require a more general
learning technique, which is an interesting direc-
tion for future research.

A Solvable subclass

Here we give a short review of the result in [6].
We show that a higher-order term of binary vari-
ables which is a composition of a piecewise-linear
concave R → R function and a modular function
with non-negative coefficients can be represented
as min-projections of submodular quadratic func-
tions. In the context of model (1), each higher-
order term (2) must be of the form

Eh(x) = min
y

(ay〈l,xV (h)〉+ cy), (18)

where l ∈ RK2

+ and a and c are arbitrary. In this
case problem (19), where pairwise terms are sub-
modular as well, is solvable in polynomial time.
Note, obviously one of the key differences to our
general model is that the weight vector wy in (2)
can have arbitrary entries for different y, and of
different signs for a single y. This is a crucial com-
ponent for modeling some aspects, e.g. curvature,
of the boundary of a segmentation.

Consider the problem

min
x∈{0,1}V

[
A(x) + P (x) +G(x)

]
, (19)

where A(x) is a linear term: A(x) =
∑

s∈V asxs
and P (x) is quadratic and submodular. We are
seeking for functions G which can be represented
as

min
y∈{0,1}Vy

[
B(x) + C(y) +Q(x, y) +D

]
, (20)

where B and C are linear and Q is quadratic sub-
modular. In this case problem (19) would reduce
to minimization of a submodular quadratic func-
tion, which is easily solvable by max-flow/min-cut.

Functions suggested by [6] may be described as
follows. A function of the form

G(x) = min(0, L(x) +D), (21)

where L(x) =
∑

s lsxs has all coefficients ls non-
positive and D ∈ R can be represented as

G(x) = min
y1∈{0,1}

y1(L(x) +D)

= min
y1∈{0,1}

[∑
s

lsxsy1 +Dy1

]
,

(22)

where the quadratic term in (x, y) is submodu-
lar. In the case when all coefficients ls are non-
negative, it can be represented as

min
y1∈{0,1}

(1− y1)(L(x) +D)

= min
y1∈{0,1}

L(x) +D +
[∑

s

−lsxsy1 −Dy1
]
,

(23)

where the quadratic term is again submodu-
lar. This allows us to represent also function
min(L1(x) + D1, L2(x) + D2) = min(L1(x) −
L2(x)+D1−D2, 0)+L2(x)+D2, under the condi-
tion that coefficients of L1−L2 are all non-positive
or all non-negative.

When coefficients of L1 − L2 are of indefinite
sign it seems impossible to represent min(L1, L2).
To give an example, why it is so restrictive, con-
sider G(x1, x2) = min(x1, x2) This function is not
submodular, indeed, G(1, 1) + G(0, 0) = 1 � 0 =
G(1, 0) + G(0, 1) and therefore can not be repre-
sented as min-projection of a submodular one.

Now, consider a more limited case, when L1 =
a1
∑

s lsxs + b1 and L2 = a2
∑

s lsxs + b2, where
ls ≥ 0. Then min(L1, L2) is always representable,
because coefficients L1 −L2 are all either positive
or negative, depending on the sign of a1 − a2. It
is also easy to see that any R→ R concave piece-
wise linear function of

∑
s lsxs can be represented

as sum of minima where each minimum is of two
linear functions satisfying the conditions and thus
it is itself representable.

B Accounting for overlap

Let bnd(x) be the set of boundary locations. It is
easy to see that for a closed discrete contour, the
number of points on the contour, |bnd(x)| is the
same as the number of edges in a 4-connected grid
(i.e. the number of neighboring pixels with differ-
ent labels). Clearly, if Eh(x) is approximating the
cost of the curvature in the neighborhood of loca-
tions h, then the sum (14) will be an inaccurate
approximation of the continuous integral, at least
because it measures the length in the 4-connected
graph metric. However, because each 8 × 8 pat-
tern actually “sees” a larger neighborhood of the

14



boundary, its weights may be adjusted so that the
sum of pattern costs approximate the desired in-
tegral better. For example, weights of the pattern
matching a diagonal line at 45 degrees may be
scaled by 1√

2
. Because neighboring patterns over-

lap and because they have to model any arbitrary
complex boundary, such an adjustment has to be
done jointly for all patterns. Note, the main focus
of [4] was to address learning of overlapping terms,
in the context of field of experts.

We now propose a second training method,
called Algorithm 2, which attempts to deal with
these problems. The goal is to adjust the pat-
tern weights such that the total curvature cost of
a shape is approximated as well as possible.

In particular, given a set of larger images, in-
dexed by i, e.g. of size 100× 100, where each im-
age depicts a different continuous shapes Si, with
discretization xi, and total curvature ti, we now
formulate the learning problem as:

arg min
w,c

∑
i

∣∣∣∑
h

Eh(xi)− ti
∣∣∣. (24)

Let us use the same trick as in Alg. 1.
If we linearize all terms Eh by fixing the
current best pattern for each location in
each image, the problem simplifies. We
therefore can iterate the following two steps:

Algorithm 2
Input: xi, ti, w, c
1. For all training images i find matching patterns
at all locations h ∈ U :

yih = arg min
y

[
∑

v∈V (h)

wy,vx
i
v + cy] (25)

2. Refit all patterns:

(w, c) =

arg min
w,c

∑
i

∣∣∣(∑h

∑
v∈V (h)wyih,v

xiv + cyih
)− ti

∣∣∣
s.t. [ min

x∈{0,1}K2
wT
j x] + cj ≥ 0 ∀j ∈ P .

(26)
The constraint in the second step enforces that
the pattern cost for each arbitrary labeling is at
least 0, which is the lowest value of the function f .

Figure 15: Objective of (24) during iterations of
Alg. 2. Red curve is evaluated on training data
and green dashed curve is evaluated on the inde-
pendent test data.

The main difference to Alg. 1 is that the refitting
step does no longer decouple into estimating pat-
terns weights independently. Step (26) will now
be solved with an LP.

We tested Alg. 2 to retrain costs c on the class
of Fourier shapes (see fig 7g(right)) so as the total
cost assigned by the model would match better to
the true cost. It is initialized with patterns (w, c)
which were learned using Alg. 1. Here we kept
the weights w fixed and only update the weights
c in step 2. Figure 15 shows the progress of Alg. 2.
Figure 16 evaluats the new trained model on inde-
pendent samples of circles and Fourier shapes. We
see that the bias of the model to overestimate the
total cost was reduced, compared to fig. 7(d,e).
As expected, this is especially true for the Fourier
shapes, since only Fourier shapes were used in
training. Note, since retraining with Alg 2 gave
only a mild improvement in approximation error,
we did not use these patterns, but rather the ones
obtained after Alg. 1 for all of our experiments.
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