Skip to main content

Anisotropic Range Image Integration

  • Conference paper
Pattern Recognition (DAGM/OAGM 2012)

Abstract

Obtaining high-quality 3D models of real world objects is an important task in computer vision. A very promising approach to achieve this is given by variational range image integration methods: They are able to deal with a substantial amount of noise and outliers, while regularising and thus creating smooth surfaces at the same time. Our paper extends the state-of-the-art approach of Zach et al.(2007) in several ways: (i) We replace the isotropic space-variant smoothing behaviour by an anisotropic (direction-dependent) one. Due to the directional adaptation, a better control of the smoothing with respect to the local structure of the signed distance field can be achieved. (ii) In order to keep data and smoothness term in balance, a normalisation factor is introduced. As a result, oversmoothing of locations that are seen seldom is prevented. This allows high quality reconstructions in uncontrolled capture setups, where the camera positions are unevenly distributed around an object. (iii) Finally, we use the more accurate closest signed distances instead of directional signed distances when converting range images into 3D signed distance fields. Experiments demonstrate that each of our three contributions leads to clearly visible improvements in the reconstruction quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Stanford 3D Scanning Repository, http://graphics.stanford.edu/data/3Dscanrep/

  2. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM Journal on Applied Mathematics 65(5), 1817–1837 (2004)

    Article  MathSciNet  Google Scholar 

  3. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of SIGGRAPH 1996, vol. 3, pp. 303–312 (1996)

    Google Scholar 

  4. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (June 1987)

    Google Scholar 

  5. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  6. Grewenig, S., Weickert, J., Bruhn, A.: From Box Filtering to Fast Explicit Diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 533–542. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Reliable Surface Reconstruction from Multiple Range Images. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 117–126. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. In: Proc. Fourth Eurographics Symposium on Geometry Processing, pp. 41–50. Eurographics Association (2006)

    Google Scholar 

  9. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH 1987, vol. 21, pp. 163–169 (July 1987)

    Google Scholar 

  10. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality, vol. 7(10), pp. 127–136 (2011)

    Google Scholar 

  11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  12. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  13. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. 2006 IEEE Conference on Computer Vision and Pattern Recognition, pp. I:519–I:528. IEEE Computer Society Press, New York (2006)

    Google Scholar 

  14. Valgaerts, L., Bruhn, A., Weickert, J.: A Variational Model for the Joint Recovery of the Fundamental Matrix and the Optical Flow. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 314–324. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  16. Wheeler, M.D., Sato, Y., Ikeuchi, K.: Consensus surfaces for modeling 3D objects from multiple range images. In: Proc. Sixth International Conference on Computer Vision, pp. 917–924. IEEE Computer Society (1998)

    Google Scholar 

  17. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L 1 range image integration. In: Proc. Ninth International Conference on Computer Vision, pp. 1–8. IEEE Computer Society Press, Rio de Janeiro (2007)

    Google Scholar 

  18. Zach, C.: Fast and high quality fusion of depth maps. In: Proc. Fourth International Symposium on 3D Data Processing, Visualization and Transmission, pp. 1–8 (2008)

    Google Scholar 

  19. Zimmer, H., Bruhn, A., Valgaerts, L., Breuß, M., Weickert, J., Rosenhahn, B., Seidel, H.P.: PDE-based anisotropic disparity-driven stereo vision. In: Deussen, O., Keim, D., Saupe, D. (eds.) Proceedings of Vision, Modeling, and Visualization 2008, pp. 263–272. Akademische Verlagsgesellschaft Aka, Konstanz (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schroers, C., Zimmer, H., Valgaerts, L., Bruhn, A., Demetz, O., Weickert, J. (2012). Anisotropic Range Image Integration. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics