Abstract
In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the coordination system of the module. The modules are controlled locally and there is no explicit communication between them. So, they can synchronize implicitly using their sensors, and coordination of their behavior takes place through the environment. In one of our experiments, all the three tilt sensors are available for the FGRNs and a simple controller is evolved. The controller is a linear mapping of one input sensor to the output. It is only based on one sensor input and ignores the other sensors as well as the regulatory part of the network. In another experiment, the controller’s input uses one of the other sensors that carries less information. In this case, the evolved controller blends sensory information with the regulatory network capabilities to come up with a proper distributed controller.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn., Garland (2002)
Banzhaf, W.: On evolutionary design, embodiment and artificial regulatory networks,”. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence, pp. 284–292. Springer (2004)
Bentley, P.J.: Fractal proteins. J. Genetic Programming and Evolvable Machines 5(1), 71–101 (2004)
Bentley, P.J.: Adaptive Fractal Gene Regulatory Networks for Robot Control. In: Genetic and Evolutionary Computation Conference, Seattle, USA (2004)
Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic Computation and Fractal Proteins. J. R Soc Interface (2009)
Bongard, J.C., Pfeifer, R.: Evolving Complete Agents Using Artificial Ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species (Designing Embodied Intelligence), pp. 237–258. Springer (2003)
Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology Independent Learning in Modular Robots. In: Int. Symposium on Distributed Autonomous Robotic Systems, pp. 379–391 (2008)
Christensen, D.J., Schultz, U.P., Brandt, D., Stoy, K.: A Unified Simulator for Self-reconfigurable Robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2008)
Dellaert, F., Beer, R.: A Developmental Model for the Evolution of Complete Autonomous Agents. In: 4th Int. Conf. on Simulation of Adaptive Behavior, pp. 393–401. MIT Press, Cambridge (1996)
Eggenberger, P.: Evolving Morphologies of Simulated 3D Organisms Based on Differential Gene Expression. In: Husbands, P., Harvey, I. (eds.) 4th European Conf. on Artificial Life (ECAL), pp. 205–213. MIT Press, Cambridge (1997)
Federici, D.: Evolving a Neurocontroller through a Process of Embryogeny. In: Schaal, S., et al. (eds.) 8th Int. Conf. of Simulation and Adaptive Behavior, pp. 373–384. MIT Press (2004)
Federici, D., Downing, K.: Evolution and Development of a Multi-Cellular Organism: Scalability, Resilience and Neutral Complexification. J. Artificial Life 12(3), 381–409 (2006)
Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: Artificial Hormone Reaction Networks: Towards Higher Evolvability in Evolutionary Multi-Modular Robotics. In: The 12th Int. Conf. on Artificial Life (2010)
Hornby, G.S., Pollak, B.: The Advantages of Generative Grammatical Encodings for Physical Design. In: Congress on Evolutionary Computation, pp. 600–607. IEEE Press (2001)
Ijspeert, A.J., Crespi, A.: Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In: IEEE Int. Conf. on Robotics and Automation, pp. 262–268 (2007)
Jakobi, N.: Harnessing Morphogenesis. In: Paton, R. (ed.) Int. Conf. on Information Processing in Cells and Tissues, Liverpool, UK, pp. 29–41 (1995)
Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic Locomotion Design and Experiments for a Modular Robotic System. IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)
Kennedy, P.J., Osborn, T.R.: A Model of Gene Expression and Regulation in an Artificial Cellular Organism. J. Complex Systems 13(1), 1–28 (2001)
Kuo, P.D., Leier, A., Banzhaf, W.: Evolving Dynamics in an Artificial Regulatory Network Model. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 571–580. Springer, Heidelberg (2004)
Murata, S., Tomita, K., Yoshida, E., Kurokawa, H., Kokaji, S.: Self-reconfigurable robot-module design and simulation. In: Proc. 6th Int. Conf. on Intelligent Autonomous Systems, Venice, Italy, pp. 911–917 (2000)
Ostergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the Atron Lattice-Based Self-Reconfigurable Robot. J. Auton. Robots 21(2), 165–183 (2006)
Stoy, K., Shen, W.M., Will, P.: How to make a self-reconfigurable robot run. In: Proc. First Int. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy, pp. 813–820 (2002)
Transeth, A.A., Pettersen, K.Y., Liljeb, P.: A survey on snake robot modeling and locomotion. J. Robotica, 999–1015 (2009)
Yim, M.: Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA (1994)
Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.J.: Towards robotic selfreassembly after explosion. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, CA, pp. 2767–2772 (2007)
Zahadat, P., Katebi, S.D.: Tartarus and Fractal Gene Regulatory Networks with Input. J. Adv. Complex Sys. 11(6), 803–829 (2008)
Zahadat, P., Christensen, D.J., Schultz, U.P., Katebi, S.D., Stoy, K.: Fractal gene regulatory networks for robust locomotion control of modular robots, In: The 11th Int. Conf. on Simulation of Adaptive Behavior (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Zahadat, P., Christensen, D.J., Katebi, S., Stoy, K. (2013). Sensor-Coupled Fractal Gene Regulatory Networks for Locomotion Control of a Modular Snake Robot. In: Martinoli, A., et al. Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32723-0_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-32723-0_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32722-3
Online ISBN: 978-3-642-32723-0
eBook Packages: EngineeringEngineering (R0)