Skip to main content

Sensor-Coupled Fractal Gene Regulatory Networks for Locomotion Control of a Modular Snake Robot

  • Chapter
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 83))

Abstract

In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the coordination system of the module. The modules are controlled locally and there is no explicit communication between them. So, they can synchronize implicitly using their sensors, and coordination of their behavior takes place through the environment. In one of our experiments, all the three tilt sensors are available for the FGRNs and a simple controller is evolved. The controller is a linear mapping of one input sensor to the output. It is only based on one sensor input and ignores the other sensors as well as the regulatory part of the network. In another experiment, the controller’s input uses one of the other sensors that carries less information. In this case, the evolved controller blends sensory information with the regulatory network capabilities to come up with a proper distributed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn., Garland (2002)

    Google Scholar 

  2. Banzhaf, W.: On evolutionary design, embodiment and artificial regulatory networks,”. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence, pp. 284–292. Springer (2004)

    Google Scholar 

  3. Bentley, P.J.: Fractal proteins. J. Genetic Programming and Evolvable Machines 5(1), 71–101 (2004)

    Article  Google Scholar 

  4. Bentley, P.J.: Adaptive Fractal Gene Regulatory Networks for Robot Control. In: Genetic and Evolutionary Computation Conference, Seattle, USA (2004)

    Google Scholar 

  5. Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic Computation and Fractal Proteins. J. R Soc Interface (2009)

    Google Scholar 

  6. Bongard, J.C., Pfeifer, R.: Evolving Complete Agents Using Artificial Ontogeny. In: Hara, F., Pfeifer, R. (eds.) Morpho-functional Machines: The New Species (Designing Embodied Intelligence), pp. 237–258. Springer (2003)

    Google Scholar 

  7. Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology Independent Learning in Modular Robots. In: Int. Symposium on Distributed Autonomous Robotic Systems, pp. 379–391 (2008)

    Google Scholar 

  8. Christensen, D.J., Schultz, U.P., Brandt, D., Stoy, K.: A Unified Simulator for Self-reconfigurable Robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2008)

    Google Scholar 

  9. Dellaert, F., Beer, R.: A Developmental Model for the Evolution of Complete Autonomous Agents. In: 4th Int. Conf. on Simulation of Adaptive Behavior, pp. 393–401. MIT Press, Cambridge (1996)

    Google Scholar 

  10. Eggenberger, P.: Evolving Morphologies of Simulated 3D Organisms Based on Differential Gene Expression. In: Husbands, P., Harvey, I. (eds.) 4th European Conf. on Artificial Life (ECAL), pp. 205–213. MIT Press, Cambridge (1997)

    Google Scholar 

  11. Federici, D.: Evolving a Neurocontroller through a Process of Embryogeny. In: Schaal, S., et al. (eds.) 8th Int. Conf. of Simulation and Adaptive Behavior, pp. 373–384. MIT Press (2004)

    Google Scholar 

  12. Federici, D., Downing, K.: Evolution and Development of a Multi-Cellular Organism: Scalability, Resilience and Neutral Complexification. J. Artificial Life 12(3), 381–409 (2006)

    Article  Google Scholar 

  13. Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: Artificial Hormone Reaction Networks: Towards Higher Evolvability in Evolutionary Multi-Modular Robotics. In: The 12th Int. Conf. on Artificial Life (2010)

    Google Scholar 

  14. Hornby, G.S., Pollak, B.: The Advantages of Generative Grammatical Encodings for Physical Design. In: Congress on Evolutionary Computation, pp. 600–607. IEEE Press (2001)

    Google Scholar 

  15. Ijspeert, A.J., Crespi, A.: Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In: IEEE Int. Conf. on Robotics and Automation, pp. 262–268 (2007)

    Google Scholar 

  16. Jakobi, N.: Harnessing Morphogenesis. In: Paton, R. (ed.) Int. Conf. on Information Processing in Cells and Tissues, Liverpool, UK, pp. 29–41 (1995)

    Google Scholar 

  17. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic Locomotion Design and Experiments for a Modular Robotic System. IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)

    Article  Google Scholar 

  18. Kennedy, P.J., Osborn, T.R.: A Model of Gene Expression and Regulation in an Artificial Cellular Organism. J. Complex Systems 13(1), 1–28 (2001)

    MathSciNet  Google Scholar 

  19. Kuo, P.D., Leier, A., Banzhaf, W.: Evolving Dynamics in an Artificial Regulatory Network Model. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 571–580. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Murata, S., Tomita, K., Yoshida, E., Kurokawa, H., Kokaji, S.: Self-reconfigurable robot-module design and simulation. In: Proc. 6th Int. Conf. on Intelligent Autonomous Systems, Venice, Italy, pp. 911–917 (2000)

    Google Scholar 

  21. Ostergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the Atron Lattice-Based Self-Reconfigurable Robot. J. Auton. Robots 21(2), 165–183 (2006)

    Article  Google Scholar 

  22. Stoy, K., Shen, W.M., Will, P.: How to make a self-reconfigurable robot run. In: Proc. First Int. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy, pp. 813–820 (2002)

    Google Scholar 

  23. Transeth, A.A., Pettersen, K.Y., Liljeb, P.: A survey on snake robot modeling and locomotion. J. Robotica, 999–1015 (2009)

    Google Scholar 

  24. Yim, M.: Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA (1994)

    Google Scholar 

  25. Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.J.: Towards robotic selfreassembly after explosion. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, CA, pp. 2767–2772 (2007)

    Google Scholar 

  26. Zahadat, P., Katebi, S.D.: Tartarus and Fractal Gene Regulatory Networks with Input. J. Adv. Complex Sys. 11(6), 803–829 (2008)

    Article  Google Scholar 

  27. Zahadat, P., Christensen, D.J., Schultz, U.P., Katebi, S.D., Stoy, K.: Fractal gene regulatory networks for robust locomotion control of modular robots, In: The 11th Int. Conf. on Simulation of Adaptive Behavior (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zahadat, P., Christensen, D.J., Katebi, S., Stoy, K. (2013). Sensor-Coupled Fractal Gene Regulatory Networks for Locomotion Control of a Modular Snake Robot. In: Martinoli, A., et al. Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32723-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32723-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32722-3

  • Online ISBN: 978-3-642-32723-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics