Skip to main content

Abstract

This chapter reviews indicators that can be used to compute the quality of approximations to level sets for black-box functions. Such problems occur, for instance, when finding sets of solutions to optimization problems or in solving nonlinear equation systems. After defining and motivating level set problems from a decision theoretic perspective, we discuss quality indicators that could be used to measure how well a set of points approximates a level set. We review simple indicators based on distance, indicators from biodiversity, and propose novel indicators based on the concept of Hausdorff distance. We study properties of these indicators with respect to continuity, spread, and monotonicity and also discuss computational complexity. Moreover, we study the use of these indicators in a simple indicatorbased evolutionary algorithm for level set approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM (2003)

    Google Scholar 

  2. Atkinson, A.B.: On the Measurement of Inequality. Journal of Economy 2, 244–263 (1970)

    Google Scholar 

  3. Branke, J.: Reducing the Sampling Variance when Searching for Robust Solutions. In: GECCO, pp. 235–242. Morgan Kaufmann (2001)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer (2000)

    Google Scholar 

  5. Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform Sampling of Local Pareto-Optimal Solution Curves by Pareto Path Following and its Applications in Multi-Objective GA. In: Lipson, H. (ed.) GECCO, pp. 813–820. ACM (2007)

    Google Scholar 

  6. Hausdorff, F.: GrundzĂ¼ge der Mengenlehre, 1st edn., Berlin (1914)

    Google Scholar 

  7. Gielis, J.: A Generic Transformation that Unifies a Wide Range of Natural and Abstract Shapes. American Journal of Botany 90(3), 333–338 (2003)

    Article  Google Scholar 

  8. Hillermeier, C.: Generalized Homotopy Approach to Multiobjective Optimization. JOTA 110(3), 557–583 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pompeiu, D.: Sur la Continuité des Fonctions de Variables Complexes. Annales de la Faculté des Sciences de Toulouse Sér. 2 7(3), 265–315 (1905)

    Article  MathSciNet  Google Scholar 

  10. RĂ©nyi, A.: Wahrscheinlichkeitsrechnung. VEB Verlag (1971)

    Google Scholar 

  11. SchĂ¼tze, O., Dell’Aere, A., Dellnitz, M.: On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems. In: Branke, et al. (eds.) Practical Approaches to Multi-Objective Optimization. Dagstuhl Seminar Proc. 04461. IBFI, Germany (2005)

    Google Scholar 

  12. SchĂ¼tze, O., Coello Coello, C.A., Mostaghim, S., Talbi, E.-G., Dellnitz, M.: Hybridizing Evolutionary Strategies with Continuation Methods for Solving Multi-Objective Problems. Engineering Optimization 40(5), 383–402 (2008)

    Article  MathSciNet  Google Scholar 

  13. SchĂ¼tze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Some Comments on GD and IGD and Relations to the Hausdorff Distance. In: Pelikan, M., Branke, J. (eds.) GECCO (Companion), pp. 1971–1974. ACM (2010)

    Google Scholar 

  14. SchĂ¼tze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multi-Objective Optimization. IEEE, Transact. EC (2010) (to appear)

    Google Scholar 

  15. Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–109. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Solow, A., Polasky, S.: Measuring Biological Diversity. Environmental and Ecological Statistics 1, 95–103 (1994)

    Article  Google Scholar 

  17. Ulrich, T., Bader, J., Thiele, L.: Defining and Optimizing Indicator-Based Diversity Measures in Multiobjective Search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ulrich, T., Thiele, L.: Maximizing Population Diversity in Single-Objective Optimization. In: Krasnogor, N. (ed.) GECCO, pp. 641–648. ACM (2011)

    Google Scholar 

  19. Weitzman, M.L.: On Diversity. The Quarterly Journal of Economics 107(2), 363–405 (1992)

    Article  MATH  Google Scholar 

  20. Yuval, G.: Finding Nearest Neighbors. In: Proc. of Inf. Process. Lett., pp. 63–65 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. M. Emmerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W. (2013). On Quality Indicators for Black-Box Level Set Approximation. In: Tantar, E., et al. EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Studies in Computational Intelligence, vol 447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32726-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32726-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32725-4

  • Online ISBN: 978-3-642-32726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics