Abstract
This chapter reviews indicators that can be used to compute the quality of approximations to level sets for black-box functions. Such problems occur, for instance, when finding sets of solutions to optimization problems or in solving nonlinear equation systems. After defining and motivating level set problems from a decision theoretic perspective, we discuss quality indicators that could be used to measure how well a set of points approximates a level set. We review simple indicators based on distance, indicators from biodiversity, and propose novel indicators based on the concept of Hausdorff distance. We study properties of these indicators with respect to continuity, spread, and monotonicity and also discuss computational complexity. Moreover, we study the use of these indicators in a simple indicatorbased evolutionary algorithm for level set approximation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM (2003)
Atkinson, A.B.: On the Measurement of Inequality. Journal of Economy 2, 244–263 (1970)
Branke, J.: Reducing the Sampling Variance when Searching for Robust Solutions. In: GECCO, pp. 235–242. Morgan Kaufmann (2001)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer (2000)
Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform Sampling of Local Pareto-Optimal Solution Curves by Pareto Path Following and its Applications in Multi-Objective GA. In: Lipson, H. (ed.) GECCO, pp. 813–820. ACM (2007)
Hausdorff, F.: GrundzĂ¼ge der Mengenlehre, 1st edn., Berlin (1914)
Gielis, J.: A Generic Transformation that Unifies a Wide Range of Natural and Abstract Shapes. American Journal of Botany 90(3), 333–338 (2003)
Hillermeier, C.: Generalized Homotopy Approach to Multiobjective Optimization. JOTA 110(3), 557–583 (2001)
Pompeiu, D.: Sur la Continuité des Fonctions de Variables Complexes. Annales de la Faculté des Sciences de Toulouse Sér. 2 7(3), 265–315 (1905)
RĂ©nyi, A.: Wahrscheinlichkeitsrechnung. VEB Verlag (1971)
SchĂ¼tze, O., Dell’Aere, A., Dellnitz, M.: On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems. In: Branke, et al. (eds.) Practical Approaches to Multi-Objective Optimization. Dagstuhl Seminar Proc. 04461. IBFI, Germany (2005)
SchĂ¼tze, O., Coello Coello, C.A., Mostaghim, S., Talbi, E.-G., Dellnitz, M.: Hybridizing Evolutionary Strategies with Continuation Methods for Solving Multi-Objective Problems. Engineering Optimization 40(5), 383–402 (2008)
SchĂ¼tze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Some Comments on GD and IGD and Relations to the Hausdorff Distance. In: Pelikan, M., Branke, J. (eds.) GECCO (Companion), pp. 1971–1974. ACM (2010)
SchĂ¼tze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multi-Objective Optimization. IEEE, Transact. EC (2010) (to appear)
Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95–109. Springer, Heidelberg (2009)
Solow, A., Polasky, S.: Measuring Biological Diversity. Environmental and Ecological Statistics 1, 95–103 (1994)
Ulrich, T., Bader, J., Thiele, L.: Defining and Optimizing Indicator-Based Diversity Measures in Multiobjective Search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg (2010)
Ulrich, T., Thiele, L.: Maximizing Population Diversity in Single-Objective Optimization. In: Krasnogor, N. (ed.) GECCO, pp. 641–648. ACM (2011)
Weitzman, M.L.: On Diversity. The Quarterly Journal of Economics 107(2), 363–405 (1992)
Yuval, G.: Finding Nearest Neighbors. In: Proc. of Inf. Process. Lett., pp. 63–65 (1976)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W. (2013). On Quality Indicators for Black-Box Level Set Approximation. In: Tantar, E., et al. EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Studies in Computational Intelligence, vol 447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32726-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-32726-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32725-4
Online ISBN: 978-3-642-32726-1
eBook Packages: EngineeringEngineering (R0)