Abstract
Using evolutionary algorithms when solving multi-objective optimization problems (MOPs) has shown remarkable results during the last decade. As a consolidated research area it counts with a number of guidelines and processes; even though, their efficiency is still a big issue which lets room for improvements. In this chapter we explore the use of gradient-based information to increase efficiency on evolutionary methods, when dealing with smooth real-valued MOPs. We show the main aspects to be considered when building local search operators using the objective function gradients, and when coupling them with evolutionary algorithms. We present an overview of our current methods with discussion about their convenience for particular kinds of problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer (1990)
Bosman, P.A.N., de Jong, E.D.: Exploiting Gradient Information in Numerical Multi-Objective Evolutionary Optimization. In: Beyer, H.-G., et al. (eds.) 2005 Genetic and Evolutionary Computation Conference (GECCO 2005), vol. 1, pp. 755–762. ACM Press, New York (2005)
Bosman, P.A.N., de Jong, E.D.: Combining Gradient Techniques for Numerical Multi-Objective Evolutionary Optimization. In: Keijzer, M., et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 1, pp. 627–634. ACM Press (July 2006) ISBN 1-59593-186-4
Bosman, P.A.N., Thierens, D.: The Naive MIDEA: A Baseline Multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 428–442. Springer, Heidelberg (2005)
Branke, J., Mostaghim, S.: About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 523–532. Springer, Heidelberg (2006)
Brown, M., Smith, R.E.: Effective Use of Directional Information in Multi-objective Evolutionary Computation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 778–789. Springer, Heidelberg (2003)
Brown, M., Smith, R.E.: Directed Multi-objective Optimization. International Journal of Computers, Systems and Signals 6(1), 3–17 (2005)
Coello Coello, C.A., Lamont, G.B. (eds.): Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A. (eds.): Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007) ISBN 978-0-387-33254-3
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001) ISBN 0-471-87339-X
Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto Sets by Multilevel Subdivision Techniques. Journal of Optimization Theory and Applications 124(1), 113–136 (2005)
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall (1983)
Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881)
Ehrgott, M., Wiecek, M.M.: Multiobjective Programming. In: Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 78, pp. 667–722. Springer (2005)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research 51(3), 479–494 (2000)
García, P., Fátima, M.L., Julián, C.F., Rafael, C.C., Carlos, A., Hernández-Díaz, A.G.: Hibridación de métodos exactos y heurísticos para el problema multiobjetivo. Rect@, Actas 15(1) (2007)
Gill, P.E., Murray, W., Saunders, M.A.: Snopt: An sqp algorithm for large-scale constrained optimization. SIAM Journal on Optimization 12(4), 979–1006 (2002)
Harada, K., Ikeda, K., Kobayashi, S.: Hybridizing of Genetic Algorithm and Local Search in Multiobjective Function Optimization: Recommendation of GA then LS. In: Keijzer, M., et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 1, pp. 667–674. ACM Press (July 2006) ISBN 1-59593-186-4
Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, p. 820. ACM (2007)
Harada, K., Sakuma, J., Kobayashi, S.: Local Search for Multiobjective Function Optimization: Pareto Descent Method. In: GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 659–666. ACM Press, New York (2006)
Hernández-Díaz, A.G., Coello Coello, C.A., Pérez, F., Caballero, R., Molina, J., Santana-Quintero, L.V.: Seeding the Initial Population of a Multi-Objective Evolutionary Algorithm using Gradient-Based Information. In: 2008 Congress on Evolutionary Computation (CEC 2008), Hong Kong, pp. 1617–1624. IEEE Service Center (June 2008)
Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. International Series of Numerical Mathematics, vol. 135. Birkhäuser (2001)
Hu, X., Huang, Z., Wang, Z.: Hybridization of the Multi-Objective Evolutionary Algorithms and the Gradient-based Algorithms. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, vol. 2, pp. 870–877. IEEE Press (December 2003)
Ishibuchi, H., Yoshida, T., Murata, T.: Balance Between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Transactions on Evolutionary Computation 7(2), 204–223 (2003)
Jaszkiewicz, A.: Genetic local search for multiple objective combinatorial optimization. European Journal of Operational Research 137(1), 50–71 (2002)
Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis, The University of Reading, Department of Computer Science, Reading, UK (January 2002)
Kuhn, H.W., Tucker, A.W.: Nonlinear Programming. In: Proceedings of the Second Berkeley Symposium on Mathematics Statistics and Probability, University of California Press (1951)
Lara, A., Coello Coello, C.A., Schütze, O.: Using Gradient-Based Information to Deal with Scalability in Multi-objective Evolutionary Algorithms. In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, pp. 16–23. IEEE Press (May 2009)
Lara, A., Coello Coello, C.A., Schütze, O.: A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE Press (2010)
Lara, A., Coello Coello, C.A., Schütze, O.: Using gradient information for multi-objective problems in the evolutionary context. In: Proceedings of the 12th Annual Conference Comp on Genetic and Evolutionary Computation, pp. 2011–2014. ACM (2010)
Lara, A., Sanchez, G., Coello Coello, C.A., Schütze, O.: HCS: A New Local Search Strategy for Memetic Multi-Objective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 14(1), 112–132 (2010)
Lara, A., Schütze, O., Coello Coello, C.A.: New Challenges for Memetic Algorithms on Continuous Multi-objective Problems. In: GECCO 2010 Workshop on Theoretical Aspects of Evolutionary Multiobjective Optimization, Portland, Oregon USA, pp. 1967–1970. ACM (July 2010)
Mejía, E.: The directed search method for constrained multi-objective optimization problems. Master’s thesis, CINVESTAV-IPN, México City (November 2010)
Mejía, E., Schütze, O.: A predictor corrector method for the computation of boundary points of a multi-objective optimization problem. In: 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 395–399. IEEE (2010)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826 (1989)
Nocedal, J., Wright, S.: Numerical Optimization, Series in Operations Research and Financial Engineering. Springer, New York (2006)
Pareto, V.: Cours Déconomie Politique. Lausanne, F. Rouge, Paris (1896)
Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Optimization Theory and Applications 114(1), 209–222 (2002)
Schütze, O., Lara, A., Coello Coello, C.A.: The directed search method for unconstrained multi-objective optimization problems. In: A Bridge Between Probability, Set Oriented Numerics and Evolutionary Computation, EVOLVE 2011 (2011)
Schütze, O., Lara, A., Coello Coello, C.A.: The directed search method for multi-objective optimization problems. Technical report (2009), http://delta.cs.cinvestav.mx/~schuetze/technical_reports/index.html
Schütze, O., Lara, A., Coello Coello, C.A.: Evolutionary Continuation Methods for Optimization Problems. In: 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, Canada, July 8-12, pp. 651–658. ACM Press (2009) ISBN 978-1-60558-325-9
Schütze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Transactions on Evolutionary Computation 15(4), 444–455 (2011)
Schütze, O., Talbi, E.-G., Coello Coello, C., Santana-Quintero, L.V., Pulido, G.T.: A Memetic PSO Algorithm for Scalar Optimization Problems. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), Honolulu, Hawaii, USA, pp. 128–134. IEEE Press (April 2007)
Shukla, P.K.: Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 58–66. Springer, Heidelberg (2007)
Shukla, P.K.: On Gradient Based Local Search Methods in Unconstrained Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 96–110. Springer, Heidelberg (2007)
Sindhya, K., Deb, K., Miettinen, K.: A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 815–824. Springer, Heidelberg (2008)
Vasile, M., Zuiani, F.: A hybrid multiobjective optimization algorithm applied to space trajectory optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
Vasile, M., Zuiani, F.: Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2011)
Wierzbicki, A.P.: Reference point methods in vector optimization and decision support. Working Papers ir98017. International Institute for Applied Systems Analysis (April 1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Lara, A., Schütze, O., Coello Coello, C.A. (2013). On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms. In: Tantar, E., et al. EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Studies in Computational Intelligence, vol 447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32726-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-32726-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32725-4
Online ISBN: 978-3-642-32726-1
eBook Packages: EngineeringEngineering (R0)