
Speeding Up OpenMP Tasking�

Spiros N. Agathos��, Nikolaos D. Kallimanis���, and Vassilios V. Dimakopoulos

Department of Computer Science, University of Ioannina
P.O. Box 1186, Ioannina, Greece, GR-45110

{sagathos,nkallima,dimako}@cs.uoi.gr

Abstract. In this work we present a highly efficient implementation of OpenMP
tasks. It is based on a runtime infrastructure architected for data locality, a cru-
cial prerequisite for exploiting the NUMA nature of modern multicore multipro-
cessors. In addition, we employ fast work-stealing structures, based on a novel,
efficient and fair blocking algorithm. Synthetic benchmarks show up to a 6-
fold increase in throughput (tasks completed per second), while for a task-based
OpenMP application suite we measured up to 87% reduction in execution times,
as compared to other OpenMP implementations.

1 Introduction

Parallel computing is quickly becoming synonymous with mainstream computing. Mul-
ticore processors have conquered not only the desktop but also the hand-held devices
market (e.g. smartphones) while many-core systems are well under way. Still, although
highly advanced and sophisticated hardware is at the disposal of everybody, program-
ming it efficiently is a prerequisite to achieving actual performance improvements.

OpenMP [13] is nowadays one of the most widely used paradigms for harnessing
multicore hardware. Its popularity stems from the fact that it is a directive-based system
which does not change the base language (C/C++/Fortran), making it quite accessible to
mainstream programmers. Its simple and intuitive structure facilitates incremental par-
allelization of sequential applications, while at the same time producing actual speedups
with relatively small effort.

The power and expressiveness of OpenMP has increased substantially with the recent
addition of tasking facilities. In particular V3.0 of the specifications include directives
that allow the creation of a task out of a given code block. Upon creation, tasks include
a snapshot of their data environment, since their execution may be deferred for a later
time or when task synchronization/scheduling directives are met. Tasking is already
supported by many commercial and non commercial compilers (e.g. [2,4,16]).

Most of these implementations rely on sophisticated runtime libraries that provide
each participating thread with private and/or shared queues to store tasks pending for

� This work has been supported in part by the General Secretariat for Research and Technol-
ogy and the European Commission (ERDF) through the Artemisia SMECY project (grant
100230).

�� S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY).
��� N.D. Kallimanis is supported by the Empirikion Foundation.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 650–661, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Speeding Up OpenMP Tasking 651

execution. Work-stealing [3] is usually employed for task scheduling, whereby idle
threads, with no local tasks to execute, try to “steal” tasks from other thread queues.
Work-stealing is a widely studied and deployed scheduling strategy, well known for its
load balancing capabilities. Efficient implementation of the work-stealing algorithm and
its related data structures is hence crucial for the performance of an OpenMP tasking
system. The associated overheads for enqueing, dequeuing and stealing tasks can easily
become performance bottlenecks limiting system’s scalability as the number of cores
keeps increasing.

In this work we present a high-performance tasking infrastructure built in the run-
time system of the OMPi OpenMP/C compiler [6]. Support for tasking was recently
added to OMPi [1], including an initial functional, albeit non-optimized, general task-
ing layer in its runtime library. Here we present a complete redesign of OMPi’s tasking
system, engineered to take advantage of modern multicore multiprocessors. The deep
cache hierarchies and private memory channels of recent multicore CPUs make such
systems behave with pronounced non-uniform memory access (NUMA) characteris-
tics. To exploit these architectures our runtime system is organized in such a way as to
maximize local operations and minimize remote accesses which may have detrimental
performance effects. This organization is coupled with a work-stealing system which
is based on an efficient blocking algorithm that emphasizes operation combining and
thread cooperation in order to reduce synchronization overheads.

We have tested our system exhaustively. Using a synthetic benchmark we reveal a
very significant— up to 6x—increase in attainable throughput (tasks completed per
second), as compared to other OpenMP compilers, thus enjoying scalability under high
task loads. At the same time applications from the BOTS tasking suite [8] experience
reduced execution times (up to 87%), again in comparison to the rest of the available
OpenMP systems.

The rest of the paper is organized as follows: in Section 2 we present OMPi and the
way it handles tasking. The organization of its optimized runtime system is presented
in detail. A key part, namely the work-stealing subsystem, is discussed separately in
Section 3. Section 4 is devoted to the experiments we performed in order to assess the
performance of our implementation and finally Section 5 concludes this work.

2 Tasking in the OMPi Compiler

OMPi [6] is an experimental, lightweight OpenMP V3.0 infrastructure for C. It consists
of a source-to-source compiler and a runtime library. The compiler takes as input C
code with OpenMP pragmas and outputs multithreaded C code augmented with calls to
its runtime library, ready to be compiled by any standard C compiler.

Upon encountering an OpenMPtask construct, the compiler uses outlining to move
the code residing within the task region to a new function. Because each task is a block
of code that may be executed asynchronously at a later time, its data environment must
be captured at the time of task creation. Thus the compiler inserts code which allocates
the required memory space, copies the relevant (firstprivate) variables and places a call
to the runtime system to create the task using the outlined function and the captured
data environment.



652 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

Fig. 1. Task queues organization. Each thread owns a circular queue (TASK QUEUE) where point-
ers to task descriptors (Td) are inserted. Each Td carries bookkeeping information, a special flag
(Exec) and a pointer to the task data.

If there exists an if clause whose condition evaluates to false or the runtime system
cannot (or selects not to) create the task, then the task must be executed immediately.
To optimize this case, the compiler produces a second copy of the task code (called
fast path), this time inlined. Local variables are declared to capture directly the data
environment and are used within the task code. In this manner, the task is executed with
almost no overheads. Depending on the runtime conditions, either the normal (outlined)
or the fast (inlined) path is executed.

2.1 Optimized Runtime

Our runtime organization is based on distributed task queues, one for each OpenMP
thread as shown in Fig. 1. These are circular queues (TASK QUEUEs) of fixed size which
is user-controlled as one of OMPi’s environment variables. When a thread meets a new
task region then it has the choice of executing it immediately or submitting it for de-
ferred execution. OMPi follows the second approach, that is our runtime uses a breadth-
first task creation policy, and the new task is stored in the thread’s local TASK QUEUE.
Whenever a thread is idle and decides to execute a task, then it dequeues a deferred task
from its TASK QUEUE. If a thread’s TASK QUEUE is empty then this thread becomes
a thief and traverses other threads queues in order to steal tasks. The manipulation
of a TASK QUEUE is a crucial synchronization point in OMPi, since multiple threads
may concurrently access it. OMPi utilizes a highly efficient work-stealing algorithm de-
scribed in the next section.

If a thread tries to store a new task in its queue and there is no space, the thread enters
throttling mode. In throttling mode newly created tasks are executed immediately and
hence the task creation policy changes to depth-first. In addition, as described above,
throttled threads utilize the fast execution path. While in throttling mode all descendant
tasks are executed immediately in the context of parent task, favoring data locality.
Notice that a suspended parent task never enters the TASK QUEUE hence it can never
be stolen by any other thread. This is to say that in OMPi all tasks are tied.

A thread’s entrance in throttling mode is one of the runtime objectives. However, a
thread operating in throttling mode does not produce deferred tasks, which results in a



Speeding Up OpenMP Tasking 653

Fig. 2. Pending, executing (stolen) and finished task. When a task is pending for execution then
corresponding entries in TASK QUEUE and PENDING QUEUE point to its Td. Upon dequeing,
only the link in TASK QUEUE is removed, freeing one slot. When the task is finished, the execut-
ing thread sets the Exec flag to announce that the descriptor can be recycled.

reduction of available parallelism. To strike a balance, before a throttled thread executes
a new task, it checks its TASK QUEUE free space. If the queue has become at least 30%
empty then throttling is disabled and task creation policy returns to breadth-first.

As shown in Fig. 1 each entry in the TASK QUEUE is a pointer to a task descriptor
(Td), which stores all the runtime information related to the task execution as well as
the task data environment. The descriptor is obtained out of the thread’s descriptor pool.
This pool contains an array of pre-allocated descriptors (in order to speed up the alloca-
tion process) and a dynamic overflow list for the case the array becomes empty. When-
ever a task finishes its execution, the corresponding Td is returned to a descriptor pool,
recycled for future reuse. A task created by a thread might be stolen and executed by
another thread in its team. When the task finishes and the descriptor must be recycled,
a decision has to be made as to which pool the descriptor should return to. If it enters
the pool of the thread that executed the task, severe memory consumption is possible in
cases where only few threads create a big number of tasks while the rest execute them.
On the other hand, this option is a local operation, enjoying lack of contention. Memory
consumption is reduced if the descriptor is put back to the task creator’s pool, and this
is what OMPi does. Notice though that synchronization needs arise since threads that
stole tasks from the same thread may try to store to its descriptor pool concurrently.

In order to avoid the aforementioned synchronization overheads, we have used a
garbage-collecting strategy, shown in Fig. 2. Each thread t maintains a private set of
pointers (PENDING QUEUE) to the task descriptors it has created and are either stored
for deferred execution or are currently executing. When a task is dequeued for execution
(e.g. because a thief stole it), the Td pointer is removed form TASK QUEUE but remains
intact in PENDING QUEUE. The descriptor contains a special flag (‘Exec’ in Fig. 1).
When the task completes its execution, the executing thread sets this flag to announce
that the descriptor can now be recycled. On specific occasions thread t traverses its
PENDING QUEUE to find Tds that represent executed tasks and returns them to its pool
for future use.



654 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

The PENDING QUEUE plays a central role in the implementation of the taskwait
and barrier constructs, too. Whenever a task meets a taskwait, it must wait un-
til the completion of all tasks it created (it is actually then that the task execution and
stealing mechanism is triggered). This completion condition is fulfilled simply when all
the descriptors in the thread’s PENDING QUEUE have been flagged as executed. Upon
meeting a barrier, a thread must wait until: (i) all its siblings reach the barrier and
(ii) all team-generated tasks are executed. For the first condition an atomic counter is
employed, getting increased by every thread reaching the barrier. For the second con-
dition each thread contiguously executes/steals pending tasks from all TASK QUEUE’s
within its team until all team PENDING QUEUEs become empty.

Our runtime design aims at using as little shared data as possible, so as to reduce
atomic operations and minimize thread synchronization. It is worth noting that in our
tasking system thread synchronization occurs only in two cases. The first is during the
unavoidable barrier construct and the second is during the work-stealing operations, as
described in the next section, for which a very fast algorithm is employed. All data
structures (e.g. Td’s in the descriptors pool) are cache line-size aligned so as to elim-
inate false sharing phenomena and avoid triggering coherency protocol actions, which
deteriorate the performance, especially in NUMA platforms.

While in OMPi each thread owns a public task queue where it stores newly created
tasks, other compilers use different organizations. In IBM XL compilers [16], a shared
task pool is associated with each parallel region where new tasks are put in the end of
the queue and threads pick up tasks from the front. In contrast, in OpenUH [4] each
OpenMP thread retains two task queues. The first queue is private and used for keeping
tied tasks, while the second is public and used to store newly created and untied tasks.
In Nanos [17], two types of queues are used. Here, a team of threads has a shared queue
for newly created and untied tasks. Furthermore, each thread owns a private local queue
used for tied tasks. A detailed comparison of many other queue organization alternatives
has been performed by Korch and Rauber [11].

3 A Fast Work-Stealing Algorithm

The work-stealing mechanism is a crucial component of an OpenMP runtime and should
thus be designed in a way to be efficient and scalable in cases of high contention.
A number of workstealing algorithms with various characteristics has been proposed,
such as Intel TBB’s AP/SP and Lazy Binary Spliting [14,15] which are targeting taks
generated by do-all loops. Cilk’s workstealing infrastructure [3] is another well-known
example; however Cilk’s runtime is not directly applicable to OpenMP since OpenMP
allows barriers among team threads. The initial implementation of OMPi tasks [1] uti-
lized a lock-free workstealing algorithm based on [5].

In many applications task creation is unbalanced and it is a very common phe-
nomenon few threads to produce many tasks and all other threads to consume them.
In such cases contention could be lowered if threads cooperated instead of competed
for obtaining the next tasks to execute. In our OpenMP tasking runtime each thread
maintains (owns) a TASK QUEUE, as explained above. A TASK QUEUE is a shared ob-
ject similar to the shared queue [12] supporting two operations: OwnerEnqueue and



Speeding Up OpenMP Tasking 655

Dequeue for inserting and removing tasks, correspondingly. OwnerEnqueue(q, t)
inserts a new task t in queue q in case there is enough free space and returns true;
otherwise, OwnerEnqueue fails and returns false. In contrast to Enqueue of a con-
ventional shared queue, OwnerEnqueue is executed only by the thread that owns q.
Dequeue is executed by any thread and removes the most early inserted task of q. Re-
cently, Fatourou and Kallimanis [10] presented CC-Synch, an object which is able to
implement (simulate) any shared object very efficiently. For example, to implement a
shared queue, it is enough to use one instance of CC-Synch and to supply the sequen-
tial code for the Enqueue and Dequeue operations. CC-Synch supports only one
operation called ApplyOp(sfunc, arg, th id); sfunc is the serial code of the operation,
arg is the argument of the operation and th id is the id of the thread that executes the
operation.

In [10], it is shown that CC-Synch significantly outperforms the state-of-the-art
synchronization techniques. This is a result of the efficient implementation of the com-
bining technique whereby, one thread (the combiner) holds a coarse lock, and addi-
tionally to the application of its own operation, serves the operations of all other active
threads. Whenever a thread executes an operation using a conventional synchronization
technique (such as spin-locks), it causes cache misses by fetching part of a shared ob-
ject’s state to the local processor cache in order to apply its operation. In the combining
technique, only the combiner fetches parts of object’s state and applies the operations of
all active threads. Therefore, a lot of cache misses are avoided and the communication
overheads among processors are much lower.

Using CC-Synch to implement an operation that is executed only by a single thread
in any point of time is rather expensive. Thus, in our work-stealing queue implementa-
tion, we designed OwnerEnqueue (which is is executed only by the owner of the
work-stealing queue) in a way that it does not make calls to ApplyOp. Thus, we
avoid making the expensive calls of CC-Synch, wherever possible. It is noticeable
that CC-Synch is better suited for cache-coherent NUMA machines, which constitute
the majority of modern multicore multiprocessors.

We now give more details for our work-stealing implementation. Our work-stealing
task queue (Fig. 3) consists of (i) a shared array of pointers to TASK structs, which is
called TASK QUEUE, (ii) a shared integer Top which points to the topmost element of
the queue, (iii) a shared integer Bottom which points to the bottommost element of the
queue, and (iv) an instance of CC-Synch. Since the OwnerEnqueue operation is
executed only by the owner of the queue, its design is simplified. Whenever a thread p
executes an OwnerEnqueue operation, it firstly executes a read on Bottom and after
that a read on Top. If there exists free space, p inserts the new task and increases Top
by one; otherwise, OwnerEnqueue returns false. Since p is the owner of the work-
stealing queue and OwnerEnqueue is executed only by the owner, p is the only thread
that modifies the shared variable Top. Therefore, no special care is needed while modi-
fying Top. Whenever p wants to execute a Dequeue operation, it first checks if at least
one element exists in the queue and in that case increases Bottom by one. Many threads
may access Bottom simultaneously, since any thread is able to execute Dequeue in
any TASK QUEUE. We implement Dequeue using an instance of the CC-Synch



656 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

typedef struct WSQueue {
int Bottom, Top;
TASK *QArray[m];
an instance of CC-Synch synchronization technique;

} WSQueue;

bool OwnerEnqueue(WSQueue *l, TASK *arg, int pid) {
int top = l->top, bottom = l->bottom;
int new_top = (top + 1) % TASKQUEUESIZE;

if (new_top == bottom) return false;
else {

l->QArray[top] = arg;
l->top = new_top;
return true;

}
}

TASK *Dequeue(WSQueue *l, int pid) { // Serial code for Dequeue, the concurrent
void *ret; // version is implemented using CC-Synch.

if (l->bottom == l->top) ret = NULL;
else {

ret = l->QArray[bottom]
l->bottom = (l->bottom + 1) % TASKQUEUESIZE;

}
return ret;

}

Fig. 3. Pseudocode for the work-stealing queue implementation

synchronization queue. Since CC-Synch is a synchronization technique that serves
operations with FIFO order, threads that execute Dequeue operations are also served
with a FIFO order. Thus, our implementation satisfies strong fairness properties.

4 Performance Evaluation

In this section we evaluate the efficiency of our OpenMP tasking implementation. A
synthetic producer/consumer benchmark was used to measure the task creation and the
task execution throughput. Furthermore, the Barcelona OpenMP Tasks suite (BOTS) [8]
was utilized in order to test our system in a broad range of task applications. All exper-
iments were run on a 16-core machine equipped with two 8-core AMD Opteron 6128
CPUs running at 2.0GHz and with a total of 16GB RAM. The system runs Debian
Squeeze based on Linux kernel 2.6.32.5. We compare the performance of our com-
piler with GNU GCC (version 4.4.5-8), Intel ICC (version 12.1.0) and Oracle SunStudio
SUNCC (version 12.2). For reference the initial unoptimized implementation of OMPi
in [1] is also included, labeled as ‘OLD’.

In [7], it is shown that choosing the appropriate limits to enable and disable task
cut-off is not an easy task. When dealing with task cut-off, it is required to have good
knowledge of application’s behavior for a specified input size, and of the runtime ’s
tasking implementation. We thus chose to deactivate all manual cut-off techniques in all
our benchmarks and let the OpenMP implementation operate under its default settings.
As far as OMPi and OLD compilers are concerned, we used the default values for the
size of TASK QUEUEs which is 24.



Speeding Up OpenMP Tasking 657

main() do_random_work()
{ {
#pragma omp parallel num_threads(nthr) volatile long i;

if(omp_get_thread_num() < nprod) {
for (int i=0;i<16E6/nprod);i++) for (i=0;i<RandomRange(0,maxload);i++)
#pragma omp task ;
do_random_work(); }

}
}

Fig. 4. Code for synthetic microbenchmark

(a) (b)

Fig. 5. Synthetic benchmark, maxload=128

We used GNU GCC with the “-O3” flag as a back-end compiler for OMPi. The cor-
responding flags for GCC, ICC and SUNCC were “-O3 -fopenmp”, “-fast -openmp” and
“-fast -xopenmp=parallel”. We experimented with a lot of other flag combinations for
all compilers but we didn’t notice significant performance differences. All experiments
were executed twelve times each, then the best and worst runs were discarded; from the
ten remaining executions average values were calculated and reported.

4.1 Synthetic Benchmark

In order to evaluate the performance of OMPi, a synthetic benchmark with a controllable
number of task producers and task consumers was used, as shown in Fig. 4. In this
benchmark, a parallel region is created and a specified number of threads (equal to
nthr) is created. Only nprod threads become producers and are allowed to create
tasks. The rest of threads simply reach the end of parallel region and become consumers
(executors) of the created tasks. Each run of the specified benchmark creates 16 ×
106 tasks, the creation of which is equally assigned to producer threads. Each task
consists of a dummy loop used to simulate workload that a task may have to execute
in a way similar to [12,9,10]. The number of iterations is a random number between 0
and maxload, a variable controlling the task granularity. Iterator variable i is annotated
as volatile in order to avoid compiler code elimination optimizations. This benchmark
aims to stress the runtime’s ability to create, steal and execute tasks.

We run several tests for different values of nthr, nprod and maxload. In Figs. 5–6
we present each implementation’s throughput, measured as the number of tasks com-
pleted per second. For Fig. 5(a) we employed one producer and nthr−1 consumers.



658 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

(a) (b)

Fig. 6. Synthetic benchmark, nthr=16

In this experiment maxload was chosen to be equal to 128, representing fine-grain
work. Some lock-free shared objects show unrealistic high performance when choosing
a maxload value equal to 0, thus it is a common benchmarking strategy [12,9,10] to
choose a small value for maxload, but not equal to 0. In this experiment, as more
threads try to steal from the task queue of the producer, task throughput decreases. This
is the result of extra synchronization overhead added, since more threads compete to get
shared access to the same TASK QUEUE. Due to the combining technique in our work-
stealing implementation, OMPi outperforms all other compilers even in cases with very
high contention and has the best scalability among them. Specifically, OMPi exhibits
up to 5 times higher task throughput (at 16 threads) compared to ICC which is ranked
as second best. The original OMPi implementation performs well only when 2 threads
are used but its throughput quickly decreases. In Fig. 5(b), we study the behavior for
different nthr values when nprod=nthr/2, while maxload is still equal to 128. The
results are similar, confirming OMPi’s superiority.

In Fig. 6(a), the performance results for different values of maxload and for a total
of 16 threads (one of which produces tasks) are displayed. In this benchmark, our run-
time exhibits higher throughput when compared to all other compilers for almost any
maxload value. For values of 8192 or less, the work that each task executes is quite
small and is overwhelmed by the contention that the work-stealing part induces. Since
OMPi exploits the combining technique in its work-stealing queue, the synchronization
overheads between threads are vastly minimized and the performance advances a lot.
We achieved a little more that 6 times better performance compared to ICC and even
better compared to GCC and SUNCC when application produces fine-grain tasks. When
the task’s granularity becomes coarser (maxload values greater than 8192), synchro-
nization overheads between threads are not a bottleneck anymore and all compilers
tend to exhibit similar behavior. Similar observations can be made with the results in
Fig. 6(b), where 8 out of the 16 threads produce tasks for different values of maxload.
For maxload values between 0 and 256 our new runtime achieves from 2.6 to 1.8 times
higher throughput than the second best (ICC).



Speeding Up OpenMP Tasking 659

4.2 Performance of the BOTS Application Suite

The Barcelona OpenMP Tasks Suite (BOTS) v.1.1.1 was used for evaluating our tasking
environment’s efficiency in a wide range of tasking scenarios. Due to space limitations
we present detailed results for the Fib, NQueens and Floorplan applications, while a
brief discussion is made for Alignment, FFT, Health, Sort, SparseLU and Strassen. In
order for every compiler to have full scheduling opportunities, we run both the tied
and the untied task versions of the applications (while OMPi always utilizes tied tasks).
We report the best execution times observed, although there were no significant perfor-
mance differences as noted also in [8].

The Fib application computes the nth Fibonacci number using a recursive paralel-
lization producing a very large number of fine-grain tasks. In Fig. 7, execution time
results for the the 40th Fibonacci number are shown. Since it was a very common phe-
nomenon for OMPi to outperform some compilers by a factor of ten or more, a logarith-
mic scale is used in y-axis. OMPi appears to be from 4 to 8 times faster than ICC and
20 to 80 times faster than the original (OLD) implementation. Since Fib exploits nested
task parallelization which creates a deep tree of small tasks, it is a common phenome-
non some threads to fill their queues. OMPi has a significant performance advantage by
leveraging the new work-stealing implementation and the fast execution path produced
by the compiler; task load is quickly balanced between threads, and the application
delves into throttling mode. Moreover, OMPi, along with ICC, scales up with the num-
ber of threads.

NQueens calculates all the solutions of the n-queens chessboard problem. It uses a
backtracking search algorithm with pruning that creates unbalanced tasks. Similarly to
Fib, Nqueens exploits nested task parallelization which creates a deep tree of tasks. In
the NQueens benchmark displayed in Fig. 8, for an input of 14 queens we get similar
results to Fib and OMPi gives the best times. OMPi is up to 2 times faster than OLD and
up to 3 times faster than ICC(not shown clearly in the logarithmic scale).

Floorplan calculates the optimal floor plan distribution of a number of cells. Tasks are
hierarchically generated for each branch of the solution space. This application induces
many data synchronizations and comes with a very irregular and aggressive pruning
mechanism, which results in a heavily unbalanced task tree. Fig. 9 displays results of
the application when the input.20 file is used; ICC is not included here because the
application could not compile properly with this compiler. OMPi achieves the fastest
times and our original implementation follows. Since Floorplan generates deep nested
tasks, OMPi performs well due to the the work-stealing implementation along with the
efficient fast path execution. SUNCC cannot exhibit speed-up, while GCC experiences
significant slow-down when more threads are used.

Results from the rest of BOTS applications are given in Table 1, for the case of
16 threads. In this table we included results from OMPi when using ICC as back-end
compiler, which in many situations produces faster code for the sequential part of the
application. In FFT, SparseLU, Strassen and Alignment applications OMPi with ICC as
backend proves to be faster, while performing second best only in two applications with
very small margins (3% in Sort and 0.2% in Health). ICC has the best behavior in Health
application, while our OLD system is the fastest as far as the Sort application is con-
cerned. Thus, OMPi proves to perform consistently well in many different application



660 S.N. Agathos, N.D. Kallimanis, and V.V. Dimakopoulos

Fig. 7. Fibonacci Fig. 8. Nqueens

Fig. 9. Floorplan

Table 1. Execution time (sec) of BOTS using 16
threads

Compiler FFT Health Sort SpLU Str. Align.

GCC 17.571 141.85 2.007 1.679 24.602 1.576
ICC 2.086 4.778 0.621 1.676 20.641 1.338
SUNCC 2.473 15.694 0.652 1.835 21.619 1.218
OLD 2.086 7.114 0.591 1.766 21.589 1.587
OMPi 1.918 5.327 0.610 1.668 22.368 1.604
OMPi ICC 1.889 4.787 0.621 1.667 20.524 0.957

scenarios, and especially when it uses an efficient back-end compiler, giving it a seri-
ous performance advantage. In general, ICC and SUNCC perform quite well with few
exceptions. The version of GCC we had available does not perform up to par.

5 Conclusion

We present a highly optimized implementation of OpenMP tasking in the context of the
OMPi compiler. The implementation is based on a carefully designed runtime system
that emphasizes locality and operation combining while minimizing remote accesses
which have detrimental performance effects in modern NUMA multicore multiproces-
sors. As a result, our system exhibits excellent scalability for high task loads and im-
pressive improvement in actual application execution times, where OMPi was shown to
offer competitive performance in comparison to other OpenMP implementations.

Currently we are working on analyzing the performance impact of the different por-
tions of our runtime system and optimizing OMPi even more for some corner cases. We
also work on supporting the recently released V3.1 of the OpenMP specifications [13]
which offer even more opportunities for fast execution through the new mergeable
and final clauses. Our preliminary experiences confirm the performance potential.



Speeding Up OpenMP Tasking 661

References

1. Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and Implementation of
OpenMP Tasks in the OMPi Compiler. In: Proc. PCI 2011, 15th Panhellenic Conference
on Informatics, pp. 265–269. IEEE, Kastoria (2011)

2. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimental Evaluation
of the New OpenMP Tasking Model. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC
2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg (2008)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An Efficient Multithreaded Runtime System. J. Parallel Distrib. Comput. 37(1), 55–69 (1996)

4. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 tasking implementation in
OpenUH. In: Proc. Open64 Workshop in Conjunction with the Int’l Symposium on Code
Generation and Optimization, Seattle, USA (March 2009)

5. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proc. SPAA 2005, 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 21–28. ACM, Las
Vegas (2005)

6. Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler for OpenMP V.2.0.
In: Proc. EWOMP 2003, 5th European Workshop on OpenMP, Aachen, Germany, pp. 5–11
(September 2003)

7. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strategies.
In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 100–110.
Springer, Heidelberg (2008)

8. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP Tasks
Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In:
Proc. ICPP 2009, 38th Int’l Conference on Parallel Processing, Vienna, Austria, pp. 124–131
(September 2009)

9. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction. In: Proc.
SPAA 2011, Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 325–334. ACM, San Jose (2011)

10. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization technique. In:
Proc. PPoPP 2012, 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 257–266. ACM, New Orleans (2012)

11. Korch, M., Rauber, T.: A comparison of task pools for dynamic load balancing of irregular
algorithms: Research Articles. Concurr. Comput.: Pract. Exper. 16(1), 1–47 (2003)

12. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: Proc. PODC 1996, 15th Annual ACM Symposium on Principles
of Distributed Computing, pp. 267–275. ACM, Philadelphia (1996)

13. OpenMP ARB: OpenMP Application Program Interface V3.1 (July 2011)
14. Reinders, J.: Intel threading building blocks, 1st edn. O’Reilly & Associates, Inc., Sebastopol

(2007)
15. Tzannes, A., Caragea, G.C., Barua, R., Vishkin, U.: Lazy binary-splitting: a run-time adap-

tive work-stealing scheduler. In: Proc. PPoPP 2010, 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 179–190. ACM, Bangalore (2010)

16. Teruel, X., Unnikrishnan, P., Martorell, X., Ayguade, E., Silvera, R., Zhang, G., Tiotto, E.:
OpenMP tasks in IBM XL compilers. In: Proc. CASCON 2008, 2008 Conference of the Cen-
ter for Advanced Studies on Collaborative Research, Ontario, Canada, pp. 207–221 (October
2008)

17. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP tasks in
Nanos v4. In: CASCON, pp. 256–259 (2007)


	Speeding Up OpenMP Tasking
	Introduction
	Tasking in the OMPi Compiler
	Optimized Runtime

	A Fast Work-Stealing Algorithm
	Performance Evaluation
	Synthetic Benchmark
	Performance of the BOTS Application Suite

	Conclusion
	References




