Abstract
Extracting metabolic pathway that dictates a specific biological response is currently one of the important disciplines in metabolic system biology research. Previous methods have successfully identified those pathways but without concerning the genetic effect and relationship of the genes, the underlying structure is not precisely represented and cannot be justified to be significant biologically. In this article, probabilistic models capable of identifying the significant pathways through metabolic networks that are related to a specific biological response are implemented. This article utilized combination of two probabilistic models, using ranking, clustering and classification techniques to address limitations of previous methods with the annotation to Kyoto Encyclopedia of Genes and Genomes (KEGG) to ensure the pathways are biologically plausible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Handorf, T., Ebenhoh, O., Heinrich, R.: Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61(4), 498–512 (2005)
Smolke, C.D.: The Metabolic Engineering Handbook: Tools and Applications. CRC Press, Boca Raton (2010)
Karp, P.D., Paley, S.M., Krummenacker, M., Latendresse, M., Dale, J.M., Lee, T.J., Kaipa, P., Gilham, F., Spaulding, A., Popescu, L., Altman, T., Paulsen, I., Keseler, I.M., Caspi, R.: Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform. 11(1), 40–79 (2010)
Mlecnik, B., Scheideler, M., Hackl, H., Hartler, J., Sanchez-Cabo, F., Trajanoski, Z.: PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Research 33(1), 633–637 (2005)
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102(43), 15545–15550 (2005)
Wei, Z., Li, H.: A markov random field model for network-based analysis of genomic data. Bioinformatics 23(12), 1537–1544 (2007)
Sanguinetti, G., Noirel, J., Wright, P.C.: Mmg: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24(8), 1078–1084 (2008)
Hancock, T., Takigawa, I., Mamitsuka, H.: Mining metabolic pathways through gene expression. Gene Expression 26(17), 2128–2135 (2010)
Takigawa, I., Mamitsuka, H.: Probabilistic path ranking based on adjacent pairwise coexpression for metabolic transcripts analysis. Bioinformatics 24(2), 250–257 (2008)
Mamitsuka, H., Okuno, Y., Yamaguchi, A.: Mining biologically active patterns in metabolic pathways using microarray expression profiles. SIGKDD Explorations 5(2), 113–121 (2003)
Hancock, T., Mamitsuka, H.: A Markov classification model for metabolic pathways. In: Workshop on Algorithms in Bioinformatics (WABI), pp. 30–40 (2009)
Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)
Yang, X., Pratley, R.E., Tokraks, S., Bogardus, C., Permana, P.A.: Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulin-resistant pima indians. Diabetologia 45, 1584–1593 (2002)
Koster, J.C., Permutt, M.A., Nichols, C.G.: Diabetes and insulin secretion: the ATP-sensitive k+ channel (k ATP) connection. Diabetes 54(11), 3065–3072 (2005)
Rusing, D., Verspohl, E.J.: Influence of diadenosine tetraphosphate (ap4a) on lipid metabolism. Cell Biochem. Funct. 22(5), 333–338 (2004)
Yu, Z., Jin, T.: New insights into the role of camp in the production and function of the incretin hormone glucagon-like peptide-1 (glp-1). Cell Signal 22(1), 1–8 (2010)
Enjyoji, K., Kotani, K., Thukral, C., Blumel, B., Sun, X., Wu, Y., Imai, M., Friedman, D., Csizmadia, E., Bleibel, W., Kahn, B.B., Robson, S.C.: Deletion of Cd39/Entpd1 Results in Hepatic Insulin Resistance. Diabetes 57, 2311–2320 (2007)
Hegarty, B.D., Turner, N., Cooney, G.J., Kraegen, E.W.: Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol. (Oxf) 196(1), 129–145 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohamed Salleh, A.H., Mohamad, M.S. (2012). Identifying Metabolic Pathway within Microarray Gene Expression Data Using Combination of Probabilistic Models. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds) Knowledge Technology. KTW 2011. Communications in Computer and Information Science, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32826-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-32826-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32825-1
Online ISBN: 978-3-642-32826-8
eBook Packages: Computer ScienceComputer Science (R0)