Skip to main content

Identifying Metabolic Pathway within Microarray Gene Expression Data Using Combination of Probabilistic Models

  • Conference paper
Knowledge Technology (KTW 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 295))

Included in the following conference series:

  • 1071 Accesses

Abstract

Extracting metabolic pathway that dictates a specific biological response is currently one of the important disciplines in metabolic system biology research. Previous methods have successfully identified those pathways but without concerning the genetic effect and relationship of the genes, the underlying structure is not precisely represented and cannot be justified to be significant biologically. In this article, probabilistic models capable of identifying the significant pathways through metabolic networks that are related to a specific biological response are implemented. This article utilized combination of two probabilistic models, using ranking, clustering and classification techniques to address limitations of previous methods with the annotation to Kyoto Encyclopedia of Genes and Genomes (KEGG) to ensure the pathways are biologically plausible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Handorf, T., Ebenhoh, O., Heinrich, R.: Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61(4), 498–512 (2005)

    Article  Google Scholar 

  2. Smolke, C.D.: The Metabolic Engineering Handbook: Tools and Applications. CRC Press, Boca Raton (2010)

    Google Scholar 

  3. Karp, P.D., Paley, S.M., Krummenacker, M., Latendresse, M., Dale, J.M., Lee, T.J., Kaipa, P., Gilham, F., Spaulding, A., Popescu, L., Altman, T., Paulsen, I., Keseler, I.M., Caspi, R.: Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform. 11(1), 40–79 (2010)

    Article  Google Scholar 

  4. Mlecnik, B., Scheideler, M., Hackl, H., Hartler, J., Sanchez-Cabo, F., Trajanoski, Z.: PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Research 33(1), 633–637 (2005)

    Article  Google Scholar 

  5. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  6. Wei, Z., Li, H.: A markov random field model for network-based analysis of genomic data. Bioinformatics 23(12), 1537–1544 (2007)

    Article  MathSciNet  Google Scholar 

  7. Sanguinetti, G., Noirel, J., Wright, P.C.: Mmg: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24(8), 1078–1084 (2008)

    Article  Google Scholar 

  8. Hancock, T., Takigawa, I., Mamitsuka, H.: Mining metabolic pathways through gene expression. Gene Expression 26(17), 2128–2135 (2010)

    Google Scholar 

  9. Takigawa, I., Mamitsuka, H.: Probabilistic path ranking based on adjacent pairwise coexpression for metabolic transcripts analysis. Bioinformatics 24(2), 250–257 (2008)

    Article  Google Scholar 

  10. Mamitsuka, H., Okuno, Y., Yamaguchi, A.: Mining biologically active patterns in metabolic pathways using microarray expression profiles. SIGKDD Explorations 5(2), 113–121 (2003)

    Article  Google Scholar 

  11. Hancock, T., Mamitsuka, H.: A Markov classification model for metabolic pathways. In: Workshop on Algorithms in Bioinformatics (WABI), pp. 30–40 (2009)

    Google Scholar 

  12. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  13. Yang, X., Pratley, R.E., Tokraks, S., Bogardus, C., Permana, P.A.: Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulin-resistant pima indians. Diabetologia 45, 1584–1593 (2002)

    Article  Google Scholar 

  14. Koster, J.C., Permutt, M.A., Nichols, C.G.: Diabetes and insulin secretion: the ATP-sensitive k+ channel (k ATP) connection. Diabetes 54(11), 3065–3072 (2005)

    Article  Google Scholar 

  15. Rusing, D., Verspohl, E.J.: Influence of diadenosine tetraphosphate (ap4a) on lipid metabolism. Cell Biochem. Funct. 22(5), 333–338 (2004)

    Article  Google Scholar 

  16. Yu, Z., Jin, T.: New insights into the role of camp in the production and function of the incretin hormone glucagon-like peptide-1 (glp-1). Cell Signal 22(1), 1–8 (2010)

    Article  MathSciNet  Google Scholar 

  17. Enjyoji, K., Kotani, K., Thukral, C., Blumel, B., Sun, X., Wu, Y., Imai, M., Friedman, D., Csizmadia, E., Bleibel, W., Kahn, B.B., Robson, S.C.: Deletion of Cd39/Entpd1 Results in Hepatic Insulin Resistance. Diabetes 57, 2311–2320 (2007)

    Article  Google Scholar 

  18. Hegarty, B.D., Turner, N., Cooney, G.J., Kraegen, E.W.: Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol. (Oxf) 196(1), 129–145 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohamed Salleh, A.H., Mohamad, M.S. (2012). Identifying Metabolic Pathway within Microarray Gene Expression Data Using Combination of Probabilistic Models. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds) Knowledge Technology. KTW 2011. Communications in Computer and Information Science, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32826-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32826-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32825-1

  • Online ISBN: 978-3-642-32826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics