Abstract
We present a near linear algorithm for determining the linear separability of two sets of points in a two-dimensional space. That algorithm does not only detects the linear separability but also computes separation information. When the sets are linearly separable, the algorithm provides a description of a separation hyperplane. For non linearly separable cases, the algorithm indicates a negative answer and provides a hyperplane of partial separation that could be useful in the building of some classification systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazaraa, M.S., Jarvis, J.J.: Linear Programming and Network Flow. John Wiley and Sons, London (1977)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152. ACM, New York (1992), http://doi.acm.org/10.1145/130385.130401
Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20, 273–297 (1995)
Elizondo, D.A.: The linear separability problem: some testing methods. IEEE Transactions on Neural Networks 17(2), 330–344 (2006), http://doi.ieeecomputersociety.org/10.1109/TNN.2005.860871
Elizondo, D.A.: Artificial neural networks, theory and applications (2008), French HDR
Elizondo, D.A., Ortiz-de-Lazcano-Lobato, J.M., Birkenhead, R.: A Novel and Efficient Method for Testing Non Linear Separability. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007, Part I. LNCS, vol. 4668, pp. 737–746. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-74690-4_75
Ferreira, L., Kaszkurewicz, E., Bhaya, A.: Solving systems of linear equations via gradient systems with discontinuous righthand sides: application to ls-svm. IEEE Transactions on Neural Networks 16, 501–505 (2005)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugenics 7(II), 179–188 (1936)
Fourier, J.B.J.: Solution d’une question pariculière du calcul des inégalités. In: Oeuvres II, pp. 317–328 (1826)
McCulloch, W., Pitts, W.: A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)
Novikoff, A.: On convergence proofs on perceptrons. In: Symposium on the Mathematical Theory of Automata, vol. XII, pp. 615–622 (1962)
Pang, S., Kim, D., Bang, S.Y.: Membership authentication using svm classification tree generated by membership-based lle data partition. IEEE Transactions on Neural Networks 16, 436–446 (2005)
Rosenblatt, F.: The perceptron: A probabilistic model for information storage in the brain. Psychological Review 65, 386–408 (1958)
Rosenblatt, F.: Principles of Neurodynamics. Spartan, Washington, D.C. (1962)
Tajine, M., Elizondo, D.: New methods for testing linear separability. Neurocomputing 47(1-4), 295–322 (2002)
Tarski, A.: A decision method for elementary algebra and geometry. Tech. rep., University of California Press, Berkeley and Los Angeles (1951)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Contassot-Vivier, S., Elizondo, D. (2012). A Near Linear Algorithm for Testing Linear Separability in Two Dimensions. In: Jayne, C., Yue, S., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2012. Communications in Computer and Information Science, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32909-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-32909-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32908-1
Online ISBN: 978-3-642-32909-8
eBook Packages: Computer ScienceComputer Science (R0)