Skip to main content

Analysis of Electricity Consumption Profiles by Means of Dimensionality Reduction Techniques

  • Conference paper
Engineering Applications of Neural Networks (EANN 2012)

Abstract

The analysis of the daily electricity consumption profile of a building and its correlation with environmental factors make it possible to estimate its electricity demand. As an alternative to the traditional correlation analysis, a new approach is proposed to provide a detailed and visual analysis of the correlations between consumption and environmental variables. Since consumption profiles are normally characterized by many electrical variables, i.e., a high dimensional space, it is necessary to apply dimensionality reduction techniques that enable a projection of these data onto an easily interpretable 2D space. In this paper, several dimensionality reduction techniques are compared in order to determine the most appropriate one for the stated purpose. Later, the proposed approach uses the chosen algorithm to analyze the profiles of two public buildings located at the University of León.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fay, D., Ringwood, J.V., Condon, M., Kelly, M.: 24-h electrical load data-a sequential or partitioned time series. Neurocomputing 55(3-4), 469–498 (2003)

    Article  Google Scholar 

  2. Nizar, A.H., Dong, Z.Y., Jalaluddin, M., Raffles, M.: Load profiling method in detecting non-technical loss activities in a power utility. In: IEEE International Power and Energy Conference, pp. 82–87 (2006)

    Google Scholar 

  3. Kendall, M.G.: Rank Correlation Methods. Charles Griffin and Company (1948)

    Google Scholar 

  4. Lee, J.A., Lendasse, A., Verleysen, M.: Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57, 49–76 (2004)

    Article  Google Scholar 

  5. Kruskal, J.B., Wish, M.: Multidimensional scaling. Sage university paper series on quantitative application in the social sciences, pp. 7–11 (1978)

    Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  7. Sammon Jr., J.W.: A non-linear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)

    Article  Google Scholar 

  8. Demartines, P., Hérault, J.: Curvilinear component analysis: a self organizing neural network for non linear mapping of data sets. IEEE Transactions on Neural Networks 8, 148–154 (1997)

    Article  Google Scholar 

  9. Kohonen, T.: The neural phonetic typewriter. Computer, 11–22 (Marzo 1988)

    Google Scholar 

  10. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method, pp. 13–20 (2000)

    Google Scholar 

  11. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  12. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591. MIT Press (2001)

    Google Scholar 

  13. Hinton, G.E., Roweis, S.: Stochastic neighbor embedding. In: Becker, T.S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 833–840. MIT Press, Cambridge (2002)

    Google Scholar 

  14. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605 (2008)

    MATH  Google Scholar 

  15. Cook, J., Sutskever, I., Mnih, A., Hinton, G.: Visualizing similarity data with a mixture of maps. In: Proceddings of the 11th International Conference on Artificial Intelligence and Statistics, vol. 2, pp. 67–74 (2007)

    Google Scholar 

  16. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer (2007)

    Google Scholar 

  17. Venna, J., Kaski, S.: Comparison of visualization methods for an atlas of gene expression data sets. Information Visualization 6, 139–154 (2007)

    Article  Google Scholar 

  18. Van der Maaten, L.: Learning a parametric embedding by preserving local structure. In: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AI-STATS), vol. 5, pp. 384–391. JMLR W&CP (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morán, A., Fuertes, J.J., Prada, M.A., Alonso, S., Barrientos, P., Díaz, I. (2012). Analysis of Electricity Consumption Profiles by Means of Dimensionality Reduction Techniques. In: Jayne, C., Yue, S., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2012. Communications in Computer and Information Science, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32909-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32909-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32908-1

  • Online ISBN: 978-3-642-32909-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics