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Abstract. Recurrent neural networks of the Reservoir Computing (RC)
type have been found useful in various time-series processing tasks with
inherent non-linearity and requirements of temporal memory. Here with
the aim to obtain extended temporal memory in generic delayed response
tasks, we combine a generalised intrinsic plasticity mechanism with an
information storage based neuron leak adaptation rule in a self-organised
manner. This results in adaptation of neuron local memory in terms of
leakage along with inherent homeostatic stability. Experimental results
on two benchmark tasks confirm the extended performance of this sys-
tem as compared to a static RC and RC with only intrinsic plasticity.
Furthermore, we demonstrate the ability of the system to solve long tem-
poral memory tasks via a simulated T-shaped maze navigation scenario.

Keywords: Recurrent neural networks, Self-adaptation, Information the-
ory, Intrinsic plasticity

1 Introduction

Reservoir Computing (RC) is a powerful paradigm for the design, analysis and
training of recurrent neural networks [3]. The RC framework has been utilized
for mathematical modeling of biological neural networks as well as applications
for non-linear time-series modeling, robotic applications and understanding the
dynamics of memory in large recurrent networks in general. Traditionally the
reservoir is randomly constructed with only the output connections trained with
a regression function. Although both spiking and analog neurons have been ex-
plored previously, here we focus on the Echo-state network (ESN) type [2] using
sigmoid leaky integrator neurons.
Although the generic RC shows impressive performance for many tasks, the fixed
random connections and variations in parameters like spectral radius, leak-rate
and number of neurons can lead to significant variations in performance. Ap-
proaches based on Intrinsic Plasticity (IP) [1] can help to improve such generic
reservoirs. IP uses an information theoretic approach for information maximiza-
tion at an individual neuron level in a self-organized manner. The IP performance
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significantly depends on the type of transfer function, degree of sparsity required
and the use of different probability distributions. However the conventional IP
method is still outperformed by specific network connectivities like permutation
matrices, in terms of the memory capacity performance [8].
We overcome this here, by first utilizing a new IP method [4] based on a Weibull
distribution for information maximization. This is then combined with an adap-
tation rule for the individual neuron leak-rate based on the local information
storage measure [7]. Transfer entropy is another measure for such an adapta-
tion rule. However conventionaly this is more difficult to compute, and as it also
maximizes input to output information transfer, it is difficult to combine with
an IP rule. We achieve such a combination in a self-organized way to guide the
individual units for both, maximizing their information and their memory based
on the available input. Subsequently through two standard benchmark tasks and
a simulated robot navigation task, we show that our adapted network has better
performance and memory capacity as compared to static and only IP adapted
reservoirs. All three tasks involve a high degree of non-linearity and requirement
of adaptable temporal memory. Specifically in robotics and engineering control
tasks with nonlinear dynamics and variational inputs (in the time domain), our
adaptation technique can show significant performance.

2 Self-Adaptive Reservoir Framework

Here we present the description of the internal reservoir network dynamics and
briefly explain (i) The local neuron memory adaptation based on information
storage measure (ii) The self-organised adaptation of reservoir neurons inspired
by intrinsic plasticity. This is based on maximization of the input-output mutual
information of each neuron considering a Weibull distribution as the expected
output distribution. Subsequently, we combine both mechanisms for a compre-
hensive adaptive framework.
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Fig. 1. The Reservoir network architecture, showing the flow of information from input
to reservoir to output units. Typically only the output connections are trained. Win

and Wsys are set randomly.
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2.1 Network Description

The recurrent network model is depicted in Fig. 1 as an abstract model of the
mammalian neo-cortex. The firing activity of the network at discrete time t
is described by the internal state activation vector x(t). Neural units are con-
nected via weighted synaptic connections W. Specifically Win are the K × N
connections from the input neurons K to the reservoir neurons N , Wout are the
N×L connections from the reservoir neurons to the output neurons L and Wsys

represents the weight matrix for the internal N ×N connections.
The state dynamics at a particular instant of time for an individual unit is

given by:

x(t+ 1) = (I −Λ)θ(t) +Λ[W sysθ(t) +W inv(t)], (1)

y(t) = W outx(t), (2)

λi =
1

Tc
(

1

1 + αi
), (3)

where x(t) = (x1(t), x2(t), ..., xN (t))T is the N dimentional vector of internal
neural activation, and v(t) = (v1(t), v2(t), ..., vK(t))T is the K-dimensional time-
dependent input that drives the recurrent network. y(t) = (y1(t), y2(t), .., yL(t)
is the output vector of the network. Λ = (λ1, λ2, ......, λN )T is a vector of indi-
vidual leak decay rates of reservoir neurons with global time constant Tc > 0,
while αi ∈ {0, 1, 2, ...., 9} is the leak control parameter. It is normally adjusted
manually and kept fixed, but here it is determined by the local information stor-
age based adaptation rule for each reservoir neuron (Section 2.2).

The ouput firing rate of neurons is given by the vector θ = (θ1, θ2, ....., θN )T .

θi(t) = fermi(aixi(t) + bi). (4)

A simple transformation from the fermi-dirac distribution function to the
tanh transfer function can be done using:

tanh(x) = 2θfermi(2x)− 1. (5)

Here bi acts as the individual neuron bias values, while ai governs the slope
of the firing rate curve. We adapt these parameters according to IP learning
mechanism, presented in Section 2.3.
The output weights Wout are computed as the ridge regression weights of the
teacher outputs d(t) on the reservoir states x(t). The objective of training is
to find a set of output weights such that the summed squared error between
the desired output and the actual network output y(t) are minimised. This is
done by changing the weights incrementaly in the direction of the error gradient.
This could also be done in a one-shot manner using the recursive least squared
algorithm [11].
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2.2 Neuron Memory Adaptation : Information Storage

An information theoretic measure named local information storage refers to the
amount of information in the previous state of the neuron that is relevant in
predicting its future state. It measures the amount of information stored in the
current state of the neuron, which provides either positive or negative informa-
tion towards its next state. Specically, the instantaneous information storage for
a variable x is the local (or un-averaged) mutual information between its semi-

infinite past x
(k)
t = {xt−k+1, ....., xt−1, xt} and its next state xt+1 at the time

step t+1 calculated for finite-k estimations. Hence, the local information storage
is defined for every spatio-temporal point within the network (dynamic reser-
voir). The local unaveraged information storage can take both positive as well as
negative values, while the Average (active) information storage Ax =

〈
ax(i, t)

〉
is always positive and bounded by log2N bits. N is the network size. The local
information storage for an internal neuron state xi is given by:

ax(i, t+ 1) = lim
k→∞

log2

(
P (x

(k)
i,t , xi,t+1)

P (x
(k)
i,t )p(xi,t+1

)
. (6)

Where ax(i, t + 1, k) respresents finite-k estimates. In case of neurons with
a certain degree of leakage (applied after the non-linearity) as introduced in [2]
for Echo-state networks (a type of RC), the leakage rate (λ) tells how much
a single neuron depends on its input, as compared to the influence of its own
previous activity. Since λ varies between 0 and 1, (1−λ) can be viewed as a local
neuron memory term. Where in, lower the value of λ, stronger the influence of
the previous level of activation as compared to current input to the neuron, or
high local memory and vice versa.
Using epochs(φ) with finite history length k = 8, the active information storage
measure at each neuron adapts the leak control parameter αi as follows :

αi =

{
αi + 1 if Ax(i, φ)−Ax(i, φ− 1) > ε
αi − 1 if Ax(i, φ)−Ax(i, φ− 1) < ε,

(7)

where ε = 1
2 log2N and 0 < αi < 9 .

After each epoch, αi and λi are adjusted and these values are used for the
subsequent epoch. Once all the training samples are exhausted the pre-training
of reservoir is completed and λi is fixed.

2.3 Generic Intrinsic Plasticity

Homeostatic regulation by way of intrinsic plasticity is viewed as a mechanism
for the biological neuron to modify its firing activity to match the input stim-
ulus distribution. In [6] a model of intrinsic plasticity based on changes to a
neurons non-linear activation function was introduced. A gradient rule for direct
minimization of the Kullback-Leibler divergence between the neurons current
firing-rate distribution and maximum entropy (fixed mean), exponential output
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distribution was presented. Subsequently in [1] an IP rule for the hyperbolic tan-
gent transfer function with a Gaussian output distribution (fixed variance max-
imum entropy distribution) was derived. During testing the adapted reservoir
dynamics, it was observed that for tasks requiring linear responses (NARMA)
the Gaussian distribution performs best. However on non-linear tasks, the ex-
ponential distribution gave a better performance. In this work, with the aim to
obtain sparser output codes with increased signal to noise ratio for a stable work-
ing memory task, we implement the learning rule for IP with a Weibull output
distribution. The shape parameter of the Weibull distribution can be tweaked
to account for various shapes of the transfer function (equation 4). With the
aim for a high kurtosis number and hence more sparser output codes, we choose
the shape parameter K = 1.5. This model was very recently introduced in [4].
However the application of this rule in the reservoir computing framework and
its effect on the network performace for standard benchmark tasks had not been
studied so far.

The probability distribution of the two-parameter Weibull random variable
θ is given as follows:

fweib(θ;β, k) =

{
k
β ( θβ )k−1exp− θ

β

k
if θ ≥ 0

0 if θ < 0
(8)

The parameters k > 0 and β > 0 control the shape and scale of the distribu-
tion respectively. Between k = 1 and k = 2, the weibull distribution interpolates
between the exponential distribution and Rayleigh distribution. Specifically for
k = 5, we obtain an almost normal distribution. Due to this generalization capa-
bility it serves best to model the actual firing rate distribution and also account
for different types of neuron non-linearities. The neuron firing rate parameters
a and b of equation (4) are calculated by minimising the Kullbeck-Leibler di-
vergence between the real output distribution fθ and the desired distribution
fweib with fixed mean firing rate β = 0.2. Here the Kullbeck-Leibler divergence
is given by:

DKL(fθ, fweib) =
∫
fθ(θ)log

(
fθ(θ)

fweib(θ)

)
dθ

= −H(θ) + 1
βk
E(θk)− (k − 1)E(log(θ))− log( k

βk
)

(9)

Where, fθ(θ) = fx(x)
dθ
dx

. for a single neuron with input x and output θ

Differentiating DKL with respect to a and b (not shown here) we get the
resulting online stochastic gradient descent rule for calculating a and b with the
learning rate η and time step h as:

∆a = η
[1

a
+ kx(h)− (k + 1)x(h)θ(h)− k

βk
x(h)θ(h)k(1− θ(h))

]
, (10)

∆b = η
[
− θ(h) + k(1− θ(h))− k

βk
θ(h)k(1− θ(h))

]
. (11)
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IP tries to optimize the neurons information content with respect to the
incoming input signal. In contrast the neural local memory adaptation rule tries
to modulate the leakage based on a quantification of the extent of influence, the
past activity of a neuron has on it’s activity in the next time step. We therefore
combine IP learning with the neuron memory adaptation rule in series. The
leakage adaptation is carried out after the intrinsic adaptation of the neuron
non-linearity. This combination leads to a single self-adaptive framework that
controls the memory of each neuron based on the input to the entire network.

3 Experiments

To show the performance of our self-adapted RC, we test it on two benchmark
tests, namely the NARMA-30 time series modeling task, and a delayed 3-bit
parity task. We choose these two tasks taking into consideration the inherent
non-linearity and requirements of extended temporal memory. Finally we use a
simulated delayed response task of robot navigation though a T-junction. This
task shows the potential application of our network for solving real robotic tasks
with long delay period between memory storage and retreival.

3.1 Experimental Setup

For all experiments the internal reservoir network was constructed using N=400
leaky integrator neurons initialised with a 10% sparse connectivity. Internal
reservoir weights W sys were drawn from the uniform distribution over [-1,1]
and were subsequently scaled to a spectral radius of 0.95. Input weights and
output feedback weights(if present) can be randomnly generated in general. The
firing rate parameters are initialised as a = 1 and b = 0 with the learning rate
for the stochastic gradient descent algorithim fixed at η = 0.0008. Weibull IP
and leak adaptation were carried out in 10 epochs in order to determine the
optimal parameters a, b and λ for each neuron. Performance evaluation was
done after the neuron leak and transfer function parameters have been fixed.
For the delayed 3-bit parity memory task the setup consisted of a single input
neuron, the internal reservoir and 800 output units. The simulated robotic task
was performed using 6 input neurons (number of sensors) and 2 output neurons
(number of actuators) with the internal reservoir size fixed to the original value.

Dynamic System Modelling with 30th Order NARMA : Its dynamics
is given by:

y(t+ 1) = 0.2y(t) + 0.004y(t)

29∑
i=0

y(t− i) + 1.5v(t− 29)v(t) + 0.001 (12)

Here y(t) is the output of the system at time ’t’. v(t) is the input to the
system at time ’t’, and is uniformly drawn from the interval [0,0.5]. The system
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was trained to output y(t) based on v(t). The task in general is quite complex
considering that the current system output depends on both the input and the
previous outputs. Consequently we use feedback connections (W back) from the
output neurons to the internal neurons with Equation (1) modified to: x(t+1) =
(I −Λ)θ(t) +Λ[W sysθ(t) +W inv(t) +W backy(t)], and Equation (2) modified
to: y(t + 1) = W out[x(t),y(t)]. The task requires extended temporal memory.
The training, validation and tesing were carried out using 1000, 2000 and 3000
time steps respectively. Five fold cross-validation was used with the training set.
Here the first 50 steps was used to warm up the reservoir and was not considered
for the training error measure. Performance is evaluated using the normalised
root mean squared error:

NRMSE =

√ 〈
(d(t)− y(t))2

〉〈
(d(t)− < y(t) >)2

〉 (13)

Delayed 3-bit Parity Task : The delayed 3-bit parity task functions over input
sequences τ time steps long. The input consists of a temporal signal v(t) drawn
uniformly from the interval [-0.5,0.5]. The desired output signal was calculated
as the PARITY (v(t − τ), v(t − τ − 1), v(t − τ − 2) for increasing time delays
of 0 ≤ τ ≤ 800. Since the parity function (XOR) is not linearly seperable,
this task is quite complex and requires long memory capabilities. We evaluated
the memory capacity of the network as the amount of variance of the delayed
input signal recoverable from the optimally trained output units summed over
all delays. For a given input signal delayed by k time steps, the net memory
capcity is given by:

MC =
∑
k

MCk =
∑
k

cov2(y(t− k), d(t))

var(y(t))var(d(t))
(14)

where cov and var denote covariance and variance operations, respectively.

Simulated Robot T-maze Navigation : In order to demonstrate the tem-
poral memory capacity of our system, we employ a four wheeled mobile robot
(NIMM4 Fig. 2(a)) to solve a delayed response task. The primary task of the
robot was to drive from the starting position untill the T-junction. Then it should
either take a left or right turn depending on whether a spherical ball(Yellow)
appeared to its right or left before the T-junction. Hence, here the robot has to
learn both the reactive behaviarol task of turning at the T-junction as well as re-
membing the event of a colored ball being shown before. Therefore conventional
methods like landmarks to identify the T-junction is not needed. Moreover, to
demonstrate the generalization capability of the system to longer time delays,
we divided the task into two mazes of different lengths. Maze B requires a longer
temporal memory as compared to maze A. NIMM4 consists of four infrared sen-
sors (two on the left and right respectively), a relative distance sensor, a relative
angle of deviation sensor and four actuators to control the desired turning and
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speed. The experiment consists of data-set aquisition, training of our adapted
RC and offline testing. During the first phase using the simulator, we manu-
ally controlled the robot movement through the maze using simple keyboard
instructions and recorded the sensor and actuator values. We recorded 80 exam-
ples in total with different initial starting positions. 40% of these were used for
trainng and 60% for offline testing. After the first phase, the self-adapted RC was
trained using imitation learning on the collected data with the actuator values
from manual control as desired output. Finally we peformed offline testing using
the remaining set of recorded data. Simulations were carried out using the C++
based LPZRobot simulator.
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Fig. 2. (a) Model of the simulated robot NIMM4 showing the sensors
(LIR,RIR,LIRR,RIRR) and actuators (U0,U1). The red ball in front of the robot rep-
resents its goal. (b) Performance of the robot in the two maze tasks (Maze B longer
than Maze A) measured in terms of percentage of correct times the robot took the
proper trajectory (left/right turn at T-junction). 5% noise is considered on sensors.

3.2 Experimental Results

In Table 1. we summarize the results of our self-adaptive RC with information
maximization based on a Weibull distribuition as compared to the performace
obtained by a static RC and RC with Gaussian distribution based intrinsic
plasticity [1]. Our network outperforms the other two models, both in terms of
lowest normalised root mean squared error (0.362) for the 30th order NARMA
task, as well as an extended average memory capacity of 47.173 for the delayed
3-bit parity task. Non-normal networks (e.g. a simple delay like network) have
been shown to theoretically allow extensive memory [9] which is not possible
for arbitary recurrent networks. However our self-adaptive RC network shows
considerable increase in the memory capacity, which was previously shown to
improve only in case of specifically selected network connections (permutation
matrices).

Figure 3(left,centre) shows screenshots of the robot performing the maze
navigation task and successfully making the correct turn at the T-junction. The
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Table 1. Normalised root mean squared error (NRMSE) and average memory capacity
performance for the NARMA-30 and 3-bit parity tasks, comparing the basic RC (ESN)
model, the RC model with a intrinsic plasticity method using Gaussian probability
density and our self-adapted RC (SRC) network using Weibull probability density.

Dataset Measure ESN RC with IP(GAUSS) SRC with IP(Weib)

NARMA-30 NRMSE 0.484 0.453 0.362
Std. Dev. 0.043 0.067 0.037

3-bit Parity Memory Cap.(MC) 30.362 32.271 47.173
Std. Dev. 1.793 1.282 1.831

turn depends on the prior input appearing while driving along the corridor. Our
adapted RC is able to successfully learn this task and use only the sensor data to
drive along the corridor and negotiate the correct turn. The offline testing results
in the form of the percentage of correct turns from the total test set for both
mazes are shown in Fig. 2(b). In case of the shorter maze A (smaller memory
retention period) we achieve average performance of 92.25% with a standard
deviation of 2.88. A good generalization capability for the longer maze B is also
observed with the average performace of 78.75% with a standard deviation of
3.11, both for right turn. This is quite high as compared to previous results
obtained by [5] for a similar task with static Echo-state network. Furthemore in
Fig.3 (right) one can see that our adapted reservoir network clearly outperforms
a static RC for the same task. Note that if additional sensors were availabe to
the robot, this could further improve the performace, owing to the availability
of additional information.
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Fig. 3. (left) Screenshots of the robot successfully navigating through the large maze
B. Yellow ball is cue to turn right at the T junction, Red ball marks its goal. (centre)
Screenshot of the robot navigating through small maze A. (right) Performance on the
maze B task after 80 trials for static reservoir vs our self-adapted reservoir. Our network
outperforms by 10%. 5% noise is considered on sensors.
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4 Conclusion

We have presented and evaluated an adaptation rule for the reservoir comput-
ing network that successfully combines intrinsic plasticity using a Weibull out-
put distribution with a neuron leak adjustment rule based on local information
storage measure. The neuron leak rate governs the degree of influence of local
memory, while intrinsic plasticity ensure information maximization at each neu-
ron output. The evaluated performance on the two benchmark tasks and the
robotic simulation demonstrates a reduction in performance error along with
an increased memory capacity, of our adapted network as compared to basic
RC setups. Future works include using online testing of our network on more
complex navigation scenarios. This will require longer working memory and fast
adaptation of reservoir time scale. We will also apply this network to an actual
hexapod robot AMOSII [10] for enabling memory guided behaviour. Moreover,
possible hierarchical arrangement of such adapted reservoirs for both short-term
and long term memory (different time scales) within a single framework will
be evaluated. Acknowledgements: This research was supported by the Emmy
Noether Program (DFG, MA4464/3-1) and the Bernstein Center for Computa-
tional Neuroscience II Göttingen (01GQ1005A, project D1).
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