Skip to main content

Applying Kernel Methods on Protein Complexes Detection Problem

  • Conference paper
Engineering Applications of Neural Networks (EANN 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 311))

  • 1576 Accesses

Abstract

During the last years, various methodologies have made possible the detection of large parts of the protein interaction network of various organisms. However, these networks are containing highly noisy data, degrading the quality of information they carry. Various weighting schemes have been applied in order to eliminate noise from interaction data and help bioinformaticians to extract valuable information such as the detection of protein complexes. In this contribution, we propose the addition of an extra step on these weighting schemes by using kernel methods to better assess the reliability of each pairwise interaction. Our experimental results prove that kernel methods clearly help the elimination of noise by producing improved results on the protein complexes detection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  2. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)

    Article  Google Scholar 

  3. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Syst. Biol. 3, 88 (2007)

    Article  Google Scholar 

  4. Yu, J., Finley Jr., R.L.: Combining multiple positive training sets to generate confidence scores for protein-protein interactions. Bioinformatics 25(1), 105–111 (2009)

    Article  Google Scholar 

  5. Brun, C., et al.: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol. 5(1), R6 (2003)

    Google Scholar 

  6. Patil, A., Nakamura, H.: Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics 6(1), 100 (2005)

    Article  Google Scholar 

  7. Samanta, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. Natl. Acad. Sci. USA 100(22), 12579–12583 (2003)

    Article  Google Scholar 

  8. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009)

    Article  Google Scholar 

  9. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13), 1623–1630 (2006)

    Article  Google Scholar 

  10. Kritikos, G.D., et al.: Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme. BMC Bioinformatics 12, 239 (2011)

    Article  Google Scholar 

  11. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  12. Moschopoulos, C.N., et al.: An enchanced Markov clustering method for detecting protein complexes. In: 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE 2008), Athens (2008)

    Google Scholar 

  13. Razick, S., Magklaras, G., Donaldson, I.M.: iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics 9, 405 (2008)

    Article  Google Scholar 

  14. Wu, M., et al.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics 10, 169 (2009)

    Article  Google Scholar 

  15. Mewes, H.W., et al.: MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 34(Database issue), D169–D172 (2006)

    Google Scholar 

  16. Kandola, N., Cristianini, N., Shawe-Taylor, J.: Learning semantic similarity. In: Advances in Neural Information Processing Systems, pp. 657–664 (2002)

    Google Scholar 

  17. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: Proceedings of the Nineteenth International Conference on Machine Learning (2002)

    Google Scholar 

  18. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006)

    Article  Google Scholar 

  19. Moschopoulos, C., et al.: Which clustering algorithm is better for predicting protein complexes? BMC Research Notes 4(1), 549 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moschopoulos, C., Laenen, G., Kritikos, G., Moreau, Y. (2012). Applying Kernel Methods on Protein Complexes Detection Problem. In: Jayne, C., Yue, S., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2012. Communications in Computer and Information Science, vol 311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32909-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32909-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32908-1

  • Online ISBN: 978-3-642-32909-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics