Skip to main content

Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution

  • Conference paper
Soft Computing Models in Industrial and Environmental Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 188))

Abstract

In this paper, Differential Evolution (DE) is used in the task of optimization of a batch reactor. The novality of the approach is that a discrete chaotic dissipative standard map is used as the chaotic number generator to drive the mutation and crossover process in DE. The results obtained are compared with original reactor geometry and process parameters adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence 20, 89–99 (2007)

    Article  Google Scholar 

  2. Silva, V.V.R., Khatib, W., Fleming, P.J.: Performance optimization of gas turbine engine. Engineering Applications of Artificial Intelligence 18, 575–583 (2005)

    Article  Google Scholar 

  3. Tan, W.W., Lu, F., Loh, A.P., Tan, K.C.: Modeling and control of a pilot pH plant using genetic algorithm. Engineering Applications of Artificial Intelligence 18, 485–494 (2005)

    Article  Google Scholar 

  4. Lepore, R., Wouwer, A.V., Remy, M., Findeisen, R., Nagy, Z., Allgöwer, F.: Optimization strategies for a MMA polymerization reactor. Computers and Chemical Engineering 31, 281–291 (2007)

    Article  Google Scholar 

  5. Rout, B.K., Mittal, R.K.: Optimal manipulator parameter tolerance selection using evolutionary optimization technique. Engineering Applications of Artificial Intelligence 21, 509–524 (2008)

    Article  Google Scholar 

  6. Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 898–1221 (2010) ISSN 0898-1221

    Article  MathSciNet  Google Scholar 

  7. Silva, C.M., Biscaia, E.C.: Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors. Computers and Chemical Engineering 27, 1329–1344 (2003)

    Article  Google Scholar 

  8. Arpornwichanop, A., Kittisupakorn, P., Mujtaba, M.I.: On-line dynamic optimization and control strategy for improving the performance of batch reactors. Chemical Engineering and Processing 44(1), 101–114 (2005)

    Article  Google Scholar 

  9. Srinisavan, B., Palanki, S., Bonvin, D.: Dynamic optimization of batch processes I. Characterization of the nominal solution. Computers and Chemical Engineering 27, 1–26 (2002)

    Google Scholar 

  10. Srinisavan, B., Palanki, S., Bonvin, D.: Dynamic optimization of batch processes II. Role of Measurement in Handling Uncertainly. Computers and Chemical Engineering 27, 27–44 (2002)

    Google Scholar 

  11. Wang, Y., Zhou, D., Gao, F.: Iterative learning model predictive control for multi-phase batch processes. Journal of Process Control 18, 543–557 (2008)

    Article  Google Scholar 

  12. Cho, W., Edgar, T.F., Lee, J.: Iterative learning dual-mode control of exothermic batch reactors. Control Engineering Practice 16, 1244–1249 (2008)

    Article  Google Scholar 

  13. Beyer, M.A., Grote, W., Reinig, G.: Adaptive exact linearization control of batch polymerization reactors using a Sigma-Point Kalman Filter. Journal of Process Control 18, 663–675 (2008)

    Article  Google Scholar 

  14. Sarma, P.: Multivariable gain-scheduled fuzzy logic control of an exothermic reactor. Engineering Applications of Artificial Intelligence 14, 457–471 (2001)

    Article  Google Scholar 

  15. Sjöberg, J., Mukul, A.: Trajectory tracking in batch processes using neural controllers. Engineering Applications of Artificial Intelligence 15, 41–51 (2002)

    Article  Google Scholar 

  16. Mukherjee, A., Zhang, J.: A reliable multi-objective control strategy for batch processes based on bootstrap aggregated neural network models. Journal of Process Control 18, 720–734 (2008)

    Article  Google Scholar 

  17. Mujtaba, M., Aziz, N., Hussain, M.A.: Neural network based modelling and control in batch reactor. Chemical Engineering Research and Design 84(8), 635–644 (2006)

    Article  Google Scholar 

  18. Causa, J., Karer, G., Nunez, A., Saez, D., Skrjanc, I., Zupancic, B.: Hybrid fuzzy predictive control based on genetic algorithms for the temperature control of a batch reactor. Computers and Chemical Engineering (2008), doi:10.1016/j.compchemeng.2008.05.014

    Google Scholar 

  19. Altinten, A., Ketevanlioglu, F., Erdogan, S., Hapoglu, H., Alpbaz, M.: Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm. Chemical Engineering Journal 138, 490–497 (2008)

    Article  Google Scholar 

  20. Faber, R., Jockenhövel, T., Tsatsaronis, G.: Dynamic optimization with simulated annealing. Computers and Chemical Engineering 29, 273–290 (2005)

    Article  Google Scholar 

  21. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) ISBN 007-709506-5

    Google Scholar 

  22. Price, K., Storn, R.: Differential evolution homepage (2001), http://www.icsi.berkeley.edu/~storn/code.html

  23. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)

    Article  Google Scholar 

  24. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Senkerik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Pluhacek, M. (2013). Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution. In: Snášel, V., Abraham, A., Corchado, E. (eds) Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32922-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32922-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32921-0

  • Online ISBN: 978-3-642-32922-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics