Abstract
This paper proposes the use of ordinal regression for helping the evaluation of Unequal Area Facility Layouts generated by an interactive genetic algorithm. Using this approach, a model obtained taking into account some objective factors and the subjective evaluation of the experts is constructed. Ordinal regression is used in this case because of the ordinal ranking between the different possible evaluations of the facility layouts made by the experts: {very deficient, deficient, intermediate, good, very good}. To do so, we will also make an approximation to some of the most successful ordinal classification methods in the machine learning literature. The best model obtained will be used in order to guide the searching of a genetic algorithm for generating new facility layouts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aiello, G., Enea, M.: Fuzzy approach to the robust facility layout in uncertain production environments. International Journal of Production Research 39(18), 4089–4101 (2001)
Armour, G.C., Buffa, E.S.: A heuristic algorithm and simulation approach to relative location of facilities. Management Science 9, 294–309 (1963)
Avigad, G., Moshaiov, A.: Interactive evolutionary multiobjective search and optimization of set-based concepts. Trans. Sys. Man Cyber. Part B 39(4), 1013–1027 (2009)
Babbar-Sebens, M., Minsker, B.S.: Interactive genetic algorithm with mixed initiative interaction for multi-criteria ground water monitoring design. Ap. Soft Comp. 12(1), 182 (2012)
Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proc. of the Ninth Int. Conf. on Intelligent Systems Design and App. (ISDA), Pisa, Italy (2009)
Brintup, A.M., Ramsden, J., Tiwari, A.: An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization. Computers in Ind. 58, 279 (2007)
Brintup, A.M., Takagi, H., Tiwari, A., Ramsden, J.: Evaluation of sequential, multi-objective, and parallel interactive genetic algorithms for multi-objective optimization problems. Journal of Biological Physics and Chemistry 6, 137–146 (2006)
Cardoso, J.S., Sousa, R.: Measuring the performance of ordinal classification. International Journal of Pattern Recognition and Artificial Intelligence 25(8), 1173–1195 (2011)
Chang, C., Lin, C.: Libsvm: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/cjlin/libsvm
Chaudhuri, S., Deb, K.: An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing 10(2), 496–511 (2010)
Cortes, C., Vapnik, V.: Support vector networks. Maching Learning 20, 273–297 (1995)
Frank, E., Hall, M.: A simple approach to ordinal classification. In: Proceedings of the 12th European Conference on Machine Learning, pp. 145–156 (2001)
García-Hernández, L., Salas-Morera, L., Arauzo-Azofra, A.: An interactive genetic algorithm for the unequal area facility layout problem. In: SOCO, pp. 253–262 (2011)
Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)
Jeong, I., Kim, K.: An interactive desirability function method to multiresponse optimization. European Journal of Operational Research 195(2), 412–426 (2009)
Kouvelis, P., Kurawarwala, A.A., Gutierrez, G.J.: Algorithms for robust single and multiple period layout planning for manufacturing systems. European Journal of Operational Research 63(2), 287–303 (1992)
Kusiak, A., Heragu, S.S.: The facility layout problem. European Journal of Operational Research 29(3), 229–251 (1987)
Li, L., Lin, H.T.: Ordinal Regression by Extended Binary Classification. In: Advances in Neural Information Processing Systems, vol. 19 (2007)
Liu, F., Geng, H., Zhang, Y.Q.: Interactive fuzzy interval reasoning for smart web shopping. Applied Soft Computing 5(4), 433–439 (2005)
Luque, M., Miettinen, K., Eskelinen, P., Ruiz, F.: Incorporating preference information in interactive reference point methods for multiobjective optimation. Omega 37(2), 450 (2009)
McCullagh, P.: Regression models for ordinal data. Journal of the Royal Statistical Society 42(2), 109–142 (1980)
Pérez-Ortiz, M., Gutiérrez, P.A., García-Alonso, C., Carulla, L.S., Pérez, J.S., Hervás-Martínez, C.: Ordinal classification of depression spatial hot-spots of prevalence. In: Proc. of the 11th Int. Conf. on Intelligent Systems Design and App (ISDA), p. 1170 (2011)
Sato, T., Hagiwara, M.: Idset: Interactive design system using evolutionary techniques. Computer-Aided Design 33(5), 367–377 (2001)
Sun, B.Y., Li, J., Wu, D.D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordinal regression. IEEE Transactions on Knowledge and Data Engineering 22, 906–910 (2010)
Tompkins, J., White, J., Bozer, Y., Tanchoco, J.: Facilities Planning, 4th edn. Wiley, New York (2010)
Tong, X.: SECOT: A Sequential Construction Technique For Facility Design. Doctoral Dissertation, University of Pittsburg (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez-Ortiz, M., García-Hernández, L., Salas-Morera, L., Arauzo-Azofra, A., Hervás-Martínez, C. (2013). An Ordinal Regression Approach for the Unequal Area Facility Layout Problem. In: Snášel, V., Abraham, A., Corchado, E. (eds) Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32922-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-32922-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32921-0
Online ISBN: 978-3-642-32922-7
eBook Packages: EngineeringEngineering (R0)