Skip to main content

Implementing AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol

  • Conference paper
Security and Cryptography for Networks (SCN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7485))

Included in the following conference series:

  • 1515 Accesses

Abstract

We describe an implementation of the protocol of Damgård, Pastro, Smart and Zakarias (SPDZ/Speedz) for multi-party computation in the presence of a dishonest majority of active adversaries. We present a number of modifications to the protocol; the first reduces the security to covert security, but produces significant performance enhancements; the second enables us to perform bit-wise operations in characteristic two fields. As a bench mark application we present the evaluation of the AES cipher, a now standard bench marking example for multi-party computation. We need examine two different implementation techniques, which are distinct from prior MPC work in this area due to the use of MACs within the SPDZ protocol. We then examine two implementation choices for the finite fields; one based on finite fields of size 28 and one based on embedding the AES field into a larger finite field of size 240.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. J. Cryptology 23, 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: Symposium on Theory of Computing, STOC 1996, pp. 479–488. ACM (1996)

    Google Scholar 

  4. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: Computer and Communications Security, CCS 2008, pp. 257–266. ACM (2008)

    Google Scholar 

  5. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM (1988)

    Google Scholar 

  7. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A Framework for Fast Privacy-Preserving Computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure Multiparty Computation Goes Live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J.I., Toft, T.: A Practical Implementation of Secure Auctions Based on Multiparty Integer Computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS 2012, pp. 309–325. ACM (2012)

    Google Scholar 

  11. Chaum, D., Crepeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Symposium on Theory of Computing – STOC 1988, pp. 11–19. ACM (1988)

    Google Scholar 

  12. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Damgård, I., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 367–374. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty Computation from Somewhat Homomorphic Encryption. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012), http://eprint.iacr.org/2011/535

    Chapter  Google Scholar 

  15. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool for automating secure two-party computations. In: Computer and Communications Security, CCS 2010, pp. 451–462. ACM (2010)

    Google Scholar 

  16. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: Proc. USENIX Security Symposium (2011)

    Google Scholar 

  17. Kreuter, B., Shelat, A., Shen, C.-H.: Towards billion-gate secure computation with malicious adversaries. IACR e-print 2012/179 (2012), http://eprint.iacr.org/2012/179

  18. Launchbury, J., Adams-Moran, A., Diatchki, I.: Efficient lookup-table protocol in secure multiparty computation (2012) (manuscript)

    Google Scholar 

  19. Laur, S., Talviste, R., Willemson, J.: AES block cipher implementation and secure database join on the SHAREMIND secure multi-party computation framework (2012) (manuscript)

    Google Scholar 

  20. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing Two-Party Computation Efficiently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation system. In: Proc. USENIX Security Symposium (2004)

    Google Scholar 

  23. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Nagle, J.: Congestion control in IP/TCP internetworks. IETF RFC 896 (1984)

    Google Scholar 

  25. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Sheshank Burra, S.: A new approach to practical active-secure two-party computation. IACR e-print 2011/91 (2011), http://eprint.iacr.org/2011/91

  26. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Yao, A.: Protocols for secure computation. In: Proc. Foundations of Computer Science – FoCS 1982, pp. 160–164. IEEE Press (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P. (2012). Implementing AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32928-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32927-2

  • Online ISBN: 978-3-642-32928-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics