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Céline Blondeau1?, Benôıt Gérard2??, and Kaisa Nyberg1

1 Aalto University School of Science, Department of Information and Computer
Science
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Abstract. Recent block ciphers have been designed to be resistant
against differential cryptanalysis. Nevertheless it has been shown that
such resistance claims may not be as accurate as wished due to recent
advances in this field. One of the main improvements to differential crypt-
analysis is the use of many differentials to reduce the data complexity.
In this paper we propose a general model for understanding multiple
differential cryptanalysis and propose new attacks based on tools used
in multidimensional linear cryptanalysis (namely LLR and χ2 statistical
tests). Practical cases to evaluate different approaches for selecting and
combining differentials are considered on a reduced version of the cipher
PRESENT. We also consider the accuracy of the theoretical estimates
corresponding to these attacks.
Keywords: block cipher, multiple differential cryptanalysis, statistical
test, data complexity.

1 Introduction

Differential cryptanalysis has been introduced in 1990 by Biham and
Shamir [3, 4] in order to break the Data Encryption Standard block ci-
pher. This statistical cryptanalysis exploits the existence of a differential,
i.e., a pair (α, β) of differences such that for a given input difference α,
the output difference after encryption equals β with a high probability.
This attack has been successfully applied to many ciphers and has been
extended to various attacks, such as truncated differential cryptanalysis
or impossible differential cryptanalysis, for instance.

In the original version of differential cryptanalysis [3], a unique dif-
ferential is exploited. Then, Biham and Shamir improved their attack
by considering several differentials having the same output difference [4].
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Truncated differential cryptanalysis introduced by Knudsen [19] uses dif-
ferentials with many output differences that are structured as a linear
space. A theoretical framework have recently been proposed to analyze
attacks using multiple differentials by summing the corresponding coun-
ters [9]3.

The motivation of this work is to investigate other different techniques
for combining information from multiple differentials. As shown in the
case of linear cryptanalysis, different approaches may be used depending
on the context. In 2004, Biryukov et al. proposed a multiple linear crypt-
analysis under the assumption that linear approximations are statistically
independent4 [5]. Later Hermelin et al. introduced the multidimensional
linear cryptanalysis [14, 15]. Contrary to previous attacks, the multidi-
mensional technique focuses on the distribution of the vector of parity bits
obtained when applying approximations to a single plaintext/ciphertext
pair instead of considering the vector of empirical biases. In that case, the
independence assumption is removed but some heuristic might be used
when theoretically analyzing the attack. For both approaches, classical
statistical tools are used to distinguish the statistic corresponding to the
correct key guess from wrong ones. Again, the choice of the tool may
depend on the context. For instance, in [10], because of the hardness of
profiling the distribution corresponding to the correct key, the attack on
PRESENT shows better results using χ2 than using LLR statistic.

Our contributions. Our contributions are threefold. First, we introduce
a general way of formalizing differential attacks by defining the notion of
partition functions (this corresponds to the way counters corresponding
to output differences are gathered). Second, we consider the χ2 and the
LLR statistical tests used in multidimensional linear cryptanalysis as tools
for combining information from the groups of differentials determined by
the partition function. We derive estimates for the data complexities of
the corresponding differential attacks. Finally, we present a set of exper-
iments that aim at (i) evaluating the accuracy of the estimates derived,
(ii) comparing χ2 and LLR combining tools and (iii) comparing different
partition functions.

The paper is organized as follows. In Section 2 we define the nota-
tions and recall some results from order statistics that will be used to

3 In [1], in parallel to this work, the authors perform an attack on a reduced ver-
sion of KATAN32 using the LLR statistical test. Estimate of the output difference
distribution is then done by enciphering the full codebook for different keys.

4 While not abusive for the DES cipher, this assumption is misleading for new ciphers.



derive data complexity estimates. Further, in Section 3 we present a gen-
eral model for multiple differential cryptanalysis, introduce the notion of
partition function and link this notion with already published differential
attacks. Then, in Section 4, we present two tools for combining informa-
tion based on the LLR and the χ2 statistical tests. We derive estimates for
the corresponding data complexities and also discuss the way of choosing
partition functions. Finally, Section 5 contains the experiments that have
been performed to compare the different methods.

2 Theoretical Background

2.1 Differential Cryptanalysis Against SPN Ciphers

In this paper we consider SPN ciphers that form a subclass of iterated
block ciphers. Let m be the block size of the considered cipher E and
K the key used for enciphering samples: E : Fm2 −→ Fm2 , x 7→ EK(x).
Then, since E is an iterated block cipher, it can be expressed as EK(x) =
FKr ◦ · · · ◦FK1(x), where F is the round function parameterized by round
sub-keys K1, . . . ,Kr.

The attack we are interested in is a member of the so-called last-
round attacks, which themselves constitute the major part of statisti-
cal cryptanalyses. These last-round5 attacks use a particular behavior of
FKr−1 ◦· · ·◦FK1 (that is often referred as statistical characteristic) to par-
tially recover the value of Kr. In the following we will use the compact

notation F r
′

K
def
= FKr′ ◦ · · · ◦ FK1 . The idea is to partially decipher cipher-

texts using different values for a part of Kr that we name candidates and
denote by k. In the case of an incorrect guess we obtain outputs corre-
sponding to F−1k ◦F

r
K while for the correct key guess k0 the outputs corre-

spond to F r−1K and thus the statistical characteristic should be observed
if enough samples are available. Such attack relies on the assumption that
F r−1K can be distinguished from the set of functions F−1k ◦F

r
K . In practical

situations, the latter functions behave as randomly chosen permutations
as stated by the following Wrong Key Randomization Hypothesis.

Hypothesis 1 (Wrong Key Randomization) Functions F−1k ◦ F rK for
wrong key candidates k are indistinguishable from randomly chosen per-
mutations.

5 Notice that the attacker may be able to consider less rounds than r − 1 but for the
sake of simplicity we detail the attack assuming one round only is considered.



Assuming that this hypothesis does not hold would mean that r + 1
rounds of the cipher are distinguishable and hence the attacker should be
able to attack more rounds. As a consequence, this hypothesis is quite
reasonable as soon as the attacker targets the largest number of rounds
he is able to attack (which is typically the case). The resulting attack
consists of the following three steps.

1 Distillation. For each key candidate ciphertexts are partially deci-
phered. The number of occurrences of the characteristic is stored for
each candidate.

2 Analysis. Key candidates are ranked according to the counters com-
puted in the Distillation step.

3 Search. Finally, all master keys corresponding to the most likely key
candidate are exhaustively tested. If the correct master key is not
found then the search step is performed again using the second most
likely candidate and so on . . .

Differential cryptanalysis. Here we consider the basic differential crypt-
analysis which is a last-round attack where the statistical characteristic
is an (r − 1)-round differential. It is a pair of input/output differences
(δ0, δr−1) and the corresponding probability p(δ0 → δr−1),

p(δ0 → δr−1)
def
= PrX,K

[
F−1Kr

(EK(X))⊕ F−1Kr
(EK(X⊕ δ0)) = δr−1

]
.

Usually, it is assumed that for an incorrect key candidate the probabil-
ity of observing the differential is 1

2m−1 . Nevertheless, it has been recalled

in [12] that considering that F−1k ◦F
r
K acts as a random permutation, the

distribution of this probability is known to be a Poisson distribution with
parameter 1

2m−1 .

Using more than one characteristic. Using many characteristics allows
the attacker to extract more information from available samples what
is of interest as soon as the induced overhead (in both distillation and
analysis steps) is negligible compared to the gain in the final search step
induced by the additional information obtained (due to the better rank-
ing of the correct key). Premise of this approach have already been pro-
posed in some papers by independently considering different differentials
[4] (different analysis phases for different characterics) or by summing
the information coming from the different characterics to perform all in
one step. In the context of linear cryptanalysis, the method known as
multiple linear cryptanalysis [18, 5, 13] considers each characteristic inde-
pendently and proposes to analyze the vectors of information for each key



candidate. While the question of characteristics combination have been
deeply studied for linear cryptanalysis [18, 5, 13–15], the lack of a com-
prehensive study on this topic in the context of differential cryptanalysis
motivates the present work. In the following, and after presenting the
required background, we propose a general framework and instantiate it
with statistical tools already shown to be useful for linear cryptanalysis.
Later on, we present experiments we ran to determine what seems to be
the best combining technique in practice.

2.2 Order statistics for Gaussian variables

We propose here to recall a result on order statistics for normally dis-
tributed random variables that have been used by Selçuk to derive esti-
mates of the data complexity for single linear6 cryptanalysis [22]. Let us
model the attack as follows. We will see later that, due to the tools used,
scores obtained will fit into this model.

Model 1 Let S(k) be the score/statistic obtained for a key candidate k.
Then,

S(k) ∼
{
N (µR, σ

2
R), if k = k0,

N (µW , σ
2
W ), otherwise.

Assuming that this model holds then the distributions of ordered wrong-
key scores are also normally distributed. This allows expressing the num-
ber of required samples for the attack as a function of the minimum rank
wished for the correct key and the probability of this rank to be reached.
Works have shown that the data complexity of an attack is not influenced
by n but by its advantage a [22, 8] that we define now.

Definition 1. Let 2n be the number of possible key candidates and ` the
maximum number of candidates that will be considered in the final search
step. Then, the advantage of such attack over exhaustive search is defined
as:

a
def
= n− log2(`).

The success probability of an attack Ps is the probability that the correct
key candidate is ranked among the ` first candidates at the output of
analysis step.

6 While single differential cryptanalysis has also been studied in the mentioned paper,
results are far from being satisfying as admitted by the author. In that case Poisson
distribution is more accurate [12, 7].



The following result expresses the success probability of an attack in
the Model 1 as a function of the parameters µR, σR, µW and σW . This
result is the cornerstone of further data complexity estimate derivations.

Lemma 1. Let a be the advantage of an attack and Ns be the number
of available samples, then, the success probability of the attack PS can be
approximated by:

PS ≈ Φ0,1

 µR − µa√
σ2a + σ2R

 ,

where µa = µW + σWΦ
−1
0,1 (1− 2−a), and, σ2a ≈

σ2
W 2−(n+a)

ϕ2
0,1(Φ

−1
0,1(1−2−a))

.

Proof. The proof follows the one of Theorem 1 in [22]. �

Remark. For the different applications considered in this paper, σa turns
out to be negligible compared to σr and hence we will consider that

σ2a + σ2R = σ2R. Indeed, it can be proved7 that 2−(n+a)

ϕ2
0,1(Φ

−1
0,1(1−2−a))

≈ 2−n
√
2π

. In

typical cases, n will be large enough for σ2a to be small compared to σ2W .
Since in the worst observed case, σ2R ≈ σ2W , then σ2a will also be negligible
compared to σ2R. Hence, we will use the following approximation for Ps:

PS = Φ0,1

(
µR − µW − σWΦ−10,1 (1− 2−a)

σR

)
. (1)

We will discuss this last point later in the respective sections and provide
observed values.

3 General Model for Multiple Differential Cryptanalysis

In simple differential cryptanalysis, one sample is composed of a pair of
plaintexts (x, x⊕ δ0) and the corresponding ciphertexts (y = EK(x), y′ = Ek(x⊕ δ0)).
Eventually, multiple input differences may be used to perform an attack
and then structures should be use to generate more samples from less
plaintexts. In the following, we will study the complexities of different at-
tacks in terms of the number Ns of required samples to avoid ambiguities.
In the case where a single input difference is used then the corresponding
data complexity N will be N = 2Ns. If more than one input difference
is used, then plaintexts should be grouped into structures and then the
coefficient 2 in the data complexity may change.

7 This result can be derived from the Taylor series of the error function.



3.1 Partition in differential cryptanalysis

In this section, we propose a general model for multiple differential crypt-
analysis. The aim of such a model is to provide a common language to
express various notions of differential cryptanalysis (multiple, improba-
ble, impossible, . . . ) in such a way that the same analysis tools can be
used to evaluate performance of the attacks. This model will also help in
the investigation for new techniques that handle multiple characteristics.

From a very abstract point of view, a differential cryptanalysis is com-
posed of two functions.

– First a sampling function processes, for each key candidate k, the
Ns available samples (si)1≤i≤Ns and extracts the corresponding dif-
ference distributions qk by normalizing the counters. This function
corresponds to the distillation step.

η : FNs

22m
×K → [0, 1]2

m
,
(
{s1, . . . , sNs}, k

)
7→ qk = (qkδ )δ∈F2m

where

qkδ =
1

Ns
#
{
si = (yi, y

′
i), F

−1
k (yi)⊕ F−1k (y′i) = δ

}
.

– Second, a scoring function extract a score for the candidate k from
the empirical distribution qk of observed differences. This function
corresponds to the first part of the analysis step (then candidates are
ordered from the most likely to the least one).

ψ : [0, 1]2
m → R, qk 7→ ψ(qk).

Since in actual ciphers m ≥ 64, the storage of distributions qk is not
possible. The solution is to consider smaller distributions. From a general
point of view, this can be done by projecting the observed differences on a
set of smaller cardinality by partitioning the space of output differences.
We will show later how known attacks translate into this model. We
denote by π such partition function from F2m to a set V (we assume that
V = Im(π)). We can generalize the sampling and scoring functions by
considering the partition function π.

Model 2 In differential cryptanalysis, the score of a key candidate is ob-
tained composing the following two functions defined for a given mapping
π from F2m to a set V .

ηπ : FNs

22m
×K → [0, 1]|V |,

(
{s1, . . . , sNs}, k

)
7→ qk = (qkv )v∈V



where

qkv
def
=

1

Ns
#
{
si = (yi, y

′
i), π

(
F−1k (yi)⊕ F−1k (y′i)

)
= v
}
,

and
ψπ : [0, 1]|V | → R, qk 7→ ψπ(qk).

Scoring functions and difference distributions. Later in Section 4,we will
instantiate different scoring functions ψπ. Some of them are based on the
knowledge of the theoretical behavior of difference distributions qk. This
behavior obviously depends on whether k corresponds to the correct key
or not. If yes, the distribution qk will be determined by differential prob-
abilities, while if not, Hypothesis 1 implies that qk follows a distribution
corresponding to what would be obtained when considering the output of
a random permutation. Hence, we place ourselves in the following model.

Model 3 Let k be a subkey candidate and qk the corresponding difference
distribution obtained by a sampling function ηπ. Then,

Pr
[
qkv = x

]
=

{
Pr [pv = x] , if k = k0,
Pr [θv = x] , otherwise,

where distributions p and θ are defined as

pv =
∑

d∈π−1(v)

p(δ0 → d) and θv =
1

#π−1(v)
.

Remark. An attack based on partitioning input and output spaces was
proposed by Harpes and Cramer in [17]. We would like to stress that such
attack uses a partition of the plaintext (ciphertext, resp.) space while we
consider in this paper partitions of input (output, resp.) difference space.

3.2 Partitions and Actual Attacks

Simple/Impossible/Improbable Differential Attacks. In these attacks, one
considers a single differential (δ0, δr−1) having an unexected behavior (eg.
a too large or too small probability of occurring). Such cryptanalyses
can be represented in our model using the following function identifying
differences to the set indexed by V = {0, 1}.

π(d) =

{
1, if d = δr−1,
0, otherwise.

The corresponding scoring function is determined by the number of times
the characteristic occurred hence only takes into consideration the value
q1 of the projected distribution.



Truncated Differential Attacks. Truncated differential cryptanalysis [19]
is similar to differential cryptanalysis in the sense that usually only one
truncated differential characteristic (∆0, ∆r−1) is used. Such attacks can
be represented in our model in the same way that the previous ones i.e.
using the projected space V = {0, 1} and a similar partition function

π(d) =

{
1, if d ∈ ∆r−1,
0, otherwise.

Again, the corresponding scoring function only takes into consideration
the value q1 of the projected distribution.

Multiple Differential Attacks. To improve the performances of differential
attacks, information coming from different differentials may be combined.
We consider here attacks such that differentials used have the same in-
put difference. We discuss at the end of Section 5 how our model can be
extended to the use of multiple input differences. Assuming that the col-

lection of differential
(
δ0, δ

(i)
r−1

)
i=1,...,A

is used, we model the attack with

projected space V = {0, 1, . . . , A} and partition function:

π(d) =

{
i, if d = δ

(i)
r−1,

0, otherwise.

4 Instantiations and Complexity Estimates

In this section, we provide instantiations of scoring functions and the
corresponding estimates for data complexities. Later, in Section 5 we ex-
periment these scoring functions using different partition functions by
attacking a reduced version of PRESENT [6, 20] and discuss the corre-
sponding time and memory complexities.

4.1 The Sum-of-counters Scoring Function

This technique consists in summing counters corresponding to considered
differentials. Theoretical analysis of this method is done in [9]. Taking
notations of the previous section, the scoring function is determined by∑A

i=1 qi or equivalently by the value 1 − q0. In this setting the scores
cannot be approximated by a Gaussian distribution and even Poisson
approximation leads to pessimistic results. This has been explained in [9]
where a formula is given to obtain a better estimate than using Poisson
distribution. For more details please refer to [9].



4.2 The LLR Scoring Function

The Neyman-Pearson lemma [21] gives the optimal form of the acceptance
region on which is derived the LLR method. The optimality requires that
both p and θ distributions are known (or at least the values pv/θv).

Definition 2. Let p = [pv]v∈V be the expected probability distribution
vector, θ the uniform one and qk the observed one for a key candidate k.
For a given number of sample Ns, the optimal statistical test consists in
comparing the following statistic to a fixed threshold.

LLR(qk, p, θ)
def
= Ns

∑
v∈V

qv log

(
pv
θv

)
.

An important remark here is that, similarly to the case presented in
Section 4.1, the LLR statistic can be computed with a memory complexity
of one floating-point counter per candidate. Indeed, this statistic is a
weighted sum of counters for which weights are known before attacking.
This test has been applied in [2] by Baignères et al. in the case of linear
cryptanalysis. Applying the law of large numbers, they shown that the
LLR statistic tends toward a Gaussian distribution with different means
and variances according to the distribution q is extracted from. These
means are expressed in terms of relative entropy.

Definition 3. Let p and p′ be two probability distribution vectors over V .
The relative entropy (aka. Kullback-Leibler divergence) between p and p′

is

D
(
p||p′

) def
=
∑
v∈V

pv log

(
pv
p′v

)
.

We also define the following metrics

D2

(
p||p′

) def
=
∑
v∈V

pv log2
(
pv
p′v

)
, and ∆D

(
p||p′

) def
= D2

(
p||p′

)
−D

(
p||p′

)2
.

Lemma 2. (Proposition 3 in [2]) The distributions of LLR(qk, p, θ) asymp-
totically tend toward a Gaussian distribution as the number of samples
Ns increases. If samples are obtained from distribution p (θ, resp.), the
LLR statistic tends toward N (µR, σ

2
R) (N (µW , σ

2
W ), resp.), where

µR = NsD (p||θ) , µW = −NsD (θ||p) ,
σ2R = Ns∆D (p||θ) , σ2W = Ns∆D (θ||p) .



Then, we can use Lemma 1 to obtain the following result.

Theorem 1. Let a be the advantage of an attack then the number Ns of
samples required to reach success probability PS is

Ns =

[√
∆D (p||θ)Φ−10,1(PS) +

√
∆D (θ||p)Φ−10,1 (1− 2−a)

]2
[D (p||θ) +D (θ||p)]2

. (2)

Proof. The proof is based on Lemma 1 and can be found in Appendix A.1.�

4.3 The χ2 Scoring Function

The aforementioned LLR test is optimal when both distributions are known.
In our context, the knowledge of θ relies on Hypothesis 1 and the knowl-
edge of p is based on the possibility of the attacker to theoretically com-
pute differential probabilities. Hence, the use of an alternative statistic
may be of interest when one of these two distributions is unknown to the
attacker. The χ2 method has already proved out to be useful particularly
in the context of linear cryptanalysis, where the correct-guess distribu-
tions vary a lot with the key [10].Also in the differential case, obtaining
a good estimate of the correct-guess distribution may be impossible. The
idea is then to compare the empirical distribution to the wrong-guess dis-
tribution: the vector corresponding to the correct key-guess should end
up with one of the largest scores (i.e., the smallest probability of being
drawn from θ).

Definition 4. Let qk be an empirical distribution vector. The χ2 statistic
used to determine the probability of the vector to correspond to a realiza-
tion from distribution θ is

χ2(qk, θ) = Ns

∑
v∈V

(qkv − θv)2

θv
.

Notice that using χ2 method, all the counters should be stored since
it is not possible to compute the statistic on-the-fly as it was the case
when summing counters or for LLR. This results in an increased memory
cost when using this technique. The following quantity appears when
considering the parameters of the χ2 score distributions.

Definition 5. Let p be a probability distribution vector over V . The ca-
pacity of this vector is defined by



C(p)
def
=
∑

v∈V
(pv − θv)2

θv
.

Lemma 3. [16] The distribution of χ2(qk, θ) asymptotically tends toward
a Gaussian distribution as the number Ns of samples increases. If samples
are obtained from distribution p (θ, resp.), the χ2 statistic tends toward
N (µR, σ

2
R) (N (µW , σ

2
W ), resp.) where,

µR = |V |+NsC(p) , µW = |V |,
σ2R = 2|V |+ 4NsC(p) , σ2W = 2|V |.

In [16], Hermelin et al. proposed an approximation of the data com-
plexity of a χ2 statistical test. It turns out that, at least in the present
context, the estimate proposed in the following theorem is tighter.

Theorem 2. Let C(p) be the capacity of the correct-candidate probability
vector p. Then, the number Ns of samples of the corresponding attack with
success probability PS and advantage a can be estimated by

Ns =

√
2|V |b+ 2t2 + t(

√
2|V |+ 2b)

√
1 + 4 t2−b2

(
√

2|V |+2b)2

C(p)
, (3)

where b = Φ−10,1(1 − 2−a) and t = Φ−10,1(PS). Fixing the success probability
to 0.5, we obtain the following estimate for the number of samples:

Ns =

√
2|V |Φ−10,1(1− 2−a)

C(p)
. (4)

Proof. The proof is based on Lemma 1 and can be found in Appendix A.2.�

4.4 Different Partition Functions

We present here two different types of partition functions. The first one
encompass all previously proposed attacks by projecting some considered
differences to corresponding elements of V and all others to 0. The sec-
ond family of partition functions induce a balanced partitioning of the
difference space (the sets of differences that are projected to elements of
V are all of equal cardinality). This last type of partitioning has (to our
knowledge) never been investigated and seems to be the most promising
one regarding the motivation of this paper. We will now refer to these two



techniques for building partition functions as respectively balanced and
unbalanced partitioning.

Let us recall that we consider that differentials used all have the same
input difference, we will explain later how different input differences can
be handled.

Unbalanced Partitioning When the attacker knows the probability of

some differentials (δ0, δ
(i)
r−1)1≤i≤A, then the natural way of partitioning

is to allocate a counter to each of these differentials. A “trash” counter
will gather all other output differences.

πunbal(d) =

{
i, if d = δi,
0, otherwise.

(5)

Let us denote by ∆r−1 the set of output differences ∆r−1
def
= (δ

(i)
r−1)1≤i≤A.

It is likely that this set allows early discarding of the so-called wrong
pairs, i.e., pairs (y, y′) such that, for all candidates k, F−1k (y)⊕F−1k (y′) 6∈
∆r−1. Using such sieving process allows to decrease the number of partial
decryptions in the attack and typically results in considering active bits
in the difference y ⊕ y′. In our model such wrong pairs will only account

for the counters qk0 . As
∑|V |−1

v=0 qkv = 1 (|V | = A + 1), for each candidate
k, qk0 can be derived from the other values. The theoretical probability θ0

is equal to θ0 = 1−
∑|V |−1

v=1 θv = 1− |V |−12m−1

Balanced Partitioning This alternative results in a balanced partitioning
of the space of differences and hence the sieving process will not be as
effective as in the case of unbalanced partitioning (if needed at all). Bal-
anced partition functions consider in the experiments have a particular
structure linked to truncated differentials. A support s to indicate the set
of targeted difference bits, s ⊂ {0,m− 1}, is determined (|V | = 2|s|) and
the partition function consists of considering only bits belonging to this
support:

πbal(d) = d|s =

|s|∑
i=0

2i · ds(i), (6)

where s(i) denote the i-th bit that belong to the support.
What may be considered as an advantage is that such partition func-

tions make use of all pairs of plaintexts. Hence more information may be
available (at the potential cost of higher time or memory requirements).
In this balanced model the distribution θ of the wrong key is uniform.
That means, in the notation of Model 3, that the quantity θv is equal, for



all v ∈ V : θv = 2m

|V | .
The main drawback of this model is that the differentials are grouped,
and depending on the way this is done, the attack may be more or less
efficient.

5 Experiments

In this section, we experiment different combinations of partition and
scoring functions on nine rounds of SMALLPRESENT-[8]8 a reduced-
version of PRESENT presented in [20]. The goal is to investigate the
potential improvements mentioned in Section 4 and to test their robust-
ness in a real attack context (that is with potentially badly estimated
distributions). More details about the choices of experiment parameters
can be found in Appendix A.3.

5.1 On the Choice of Partition Functions

Depending on the targeted cipher, the structure of the possible partition
functions may differ a lot. Nevertheless, using both a balanced and an
unbalanced partitioning, (see Equations (6), and (5)) we expect to cover
a large spectrum of attack possibilities in the context of SPN ciphers.

About πunbal. Such unbalanced partition function is generally chosen in
such a way that an efficient sieve can be performed to discard wrong pairs.
In our settings, see Equation (5) , the discarded pairs correspond to the
ones that increment counter q0 for all key candidates. The use of such
sieving process leads to an important gain in the time complexity of the
partial decryption phase.

The weakness of this kind of partition function is that only few pairs
are really useful to the attack (non-discarded pairs). More precisely, for
Ns samples and a given index value v 6= 0,

#
{

(y, y′)|πunbal
(
F−1k (y)⊕ F−1k (y′)

)
= v
}

= O
(
Ns
2m

)
, where Ns

2m ≤ 1.

In the context of classical simple differential cryptanalysis this phenomenon
is related to the thresholds that can be observed on curves representing
success rate or advantage as a function of the number of available sam-
ples. When using scoring techniques as the one proposed in this paper,
this may explain part of the discrepancies between theoretical and em-
pirical results, particularly in the context of χ2.

8 It is an SPN cipher that processes 32-bit blocs using a 40-bit master key. One
round is composed of a key addition, a non-linear layer of 4-bit S-boxes and a bit
permutation.



About πbal. In the case of balanced partition functions, the aforementioned
behavior is not observed since all pairs are taken into account. Indeed,

#
{

(y, y′)|πbal
(
F−1k (y)⊕ F−1k (y′)

)
= v
}

= O (Ns · θv) , while θv =
1

|V |
.

That means that for balanced partition functions, if Ns is larger than |V |,
the noise is reduced9. Nevertheless, in such context we generally cannot
use an efficient sieving process hence the time complexity of the resulting
attack is more important: for each sample a partial decryption of the
last round has to be performed. Part of this drawback is removed due to
the smaller data complexity. Hence both approaches may be of interest
depending on the context.

5.2 Experimental Results

The present work proposes to model multiple differential cryptanalysis as
the combination of a partition and a scoring function. We derived esti-
mates for the data complexity corresponding to different scoring functions
and introduced two families of partition functions. Hence, there are many
things that experiments may tell us about the relevance of these tools. We
will first discuss the accuracy of the estimates for the data complexity we
derived. Then, we will focus on the scoring functions and their robustness
regarding badly estimated distributions. Thus, we ran experiments in two
different contexts:

(i) using “actual” correct-key distribution: this distribution was obtained
by experimentally computing differential probabilities for fixed keys
and then averaging over 200 different keys10;

(ii) using estimated correct-key distribution: we model the fact that an
attacker may only have access to estimates of the differential prob-
abilities by degrading the actual correct-key distribution for a given
error rate.

All experiments have been performed targeting nine rounds of the cipher.
The main reason is that the corresponding data complexities are high
enough for the attack to make sense and small enough for us to perform
enough experiments. For the same reason, we choose size of output spaces
|V | in such a way that the counter storage of the resulting attacks can be
handled in RAM and that the number of key candidates is at most 216.

9 Intuitively: for a fixed value of |V |, the noise is decreasing as the number of sample
is increasing

10 This technique has been shown to provide good results in [7].



Accuracy of the data complexity estimates. Accuracy of the data
complexity estimates presented in Theorem 1 and Theorem 2 depends on
different parameters (the size of the output space, the partition function
and so on). It also strongly depends on the correctness of estimates used
for the distributions. In order to focus on the validity of provided formulas,
we ran experiments in the setting (i)11 correct-key distribution thus any
observed deviation should not be attributed to an incorrect estimate of
the differential probabilities.
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Fig. 1. Data complexities of attacks using χ2 scoring and balanced partitioning.
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Fig. 2. Data complexities of attacks using LLR scoring and balanced partitioning.

We observe that for both χ2 (Figure 1) and LLR (Figure 2), formulas
provided by Theorem 2 and Theorem 1 give rather good estimates for the
data complexity.

11 Notice that for the χ2 scoring function, we first computed capacities for different
fixed keys and then averaged obtained values.



Comparison of scoring functions (known distributions). We now
consider Figure 1 and Figure 2 in a different way, since we aim at compar-
ing both χ2 and LLR scoring functions. Obviously the LLR scoring function
has much smaller data requirement. For instance, for an advantage a = 7
and an output space size |V | = 212, it only requires 218.7 plaintexts to
reach a success probability of one half while 223.55 is required using χ2.
This is a natural result since LLR attacks are run with actual values of
the differential probabilities and hence have more information to process
the available data.

Comparison of scoring functions (estimated distributions). In
[10], Cho has shown that if the attacker only has a badly estimated
correct-key distribution then using the LLR statistical test is not relevant
anymore. We conducted experiments in that direction assuming that the
estimated probability distributions were biased. We emulated this phe-
nomenon by adding some random noise to the distribution estimate (that
is p̂v = pv ± pv

100) then normalizing p̂v.
We present in Figure 3 the results of our investigation in the case of

a balanced partition function with |V | = 28 (case were the best match is
obtained between theory and practice) when the attacker only knows a
correct estimate of the distribution. Using both LLR or χ2 scoring func-
tions leads to inaccurate estimations of the data complexity.
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Fig. 3. Data complexities for biased distribution (using balanced partitioning of a set
of cardinality |V | = 28 with advantage a = 4).

It turns out that the noised distribution we obtained can be distin-
guished from the corresponding uniform distribution θ more easily and
hence theoretical expectations are optimistic. For χ2 method, it can be
seen by comparing capacities (the noised distribution has a larger capac-
ity than the actual one) and in the case of LLR method this can be seen by



looking at the relative entropy between θ and the noised distribution (that
is larger). The main information is that this badly estimated distribution
does not affect the attack using χ2 scoring function, what is quite natural
since the distribution p is not involved in the process, while for LLR scor-
ing function this induces an overhead in the data complexity. With only
a 1% bias, χ2 scoring function achieve slightly better performance than
LLR (in terms of data complexity).

Notice that in practice, when instantiating attacks on real ciphers
with large state size, it is not so easy to obtain a good estimation of the
correct-key distributions. A folklore result is that the differential prob-
ability can be underestimated by adding probabilities of corresponding
differential trails found using a Branch-and-Bound algorithm. The main
difficulty comes from the choice made by designers known as “wide trail
strategy” [11]. Such strategy implies that the number of significant trails
in a differential (or linear approximation) exponentially increases with the
number of rounds. Experiments made (but not presented in this paper)
show that even on SMALLPRESENT-[8] estimating distributions directly
using a Branch-and-Bound algorithm leads to an error drastically larger
than 1%. Hence in practice, an attacker may favor the χ2 scoring function.

Comparing partition functions. Let us now consider the impact of
partition functions used. Figure 1 and Figure 2 are related to experiments
that have been performed using the newly introduced balanced partition-
ing. We also ran experiments using the former unbalanced partitioning
for which an efficient sieving process can be performed (see Figure 4).
We chose to perform attacks with an output set of size |V | = 216. The
reason is that for smaller sizes corresponding attacks require much more
data. Hence, to fairly compare partition functions we used best possible
parameters that allow performing enough attacks for plotting results in
a given time.

First we observe that due to the use of a sieving process, the theo-
retical estimates for the data complexity are pretty optimistic (a sketch
of explanation is given in Section 5.1). Focusing on experimental curves,
we can conclude that from a purely information theoretical point of view,
using balanced partitioning allows extracting more information from avail-
able samples than using unbalanced ones. Nevertheless, also the cost of
memory and time, see Appendix A.4, has to be considered when compar-
ing both types of partition functions.
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Fig. 4. Data complexities for an unbalanced partitioning (set of cardinality 216).

On the use of differentials with different input differences. There
are two straightforward ways of extending this work to multiple input
differences. The first one is to consider the same partition function for
each input difference so that only one output distribution is considered.
The second technique is orthogonal since it consists in considering inde-
pendently the distributions coming from different input differences. The
corresponding scoring functions boils down to summing scores obtain for
each distribution.

We ran experiments using both approaches and surprisingly did not
obtained radically better results than using a single input difference. Nev-
ertheless, we observed a strong correlation between the distributions ob-
tained that should be exploited. This is a very promising scope for further
improvements of this work.

6 Conclusion

This paper builds on the work made on the topic of linear cryptanalysis
using multiple approximations. We investigate different statistical tests
(namely LLR and χ2) to combine information coming from a large num-
ber of differentials while, to our knowledge, only summing counters was
considered up to now. To analyze these tools, we introduce a formal way of
representing multiple differential cryptanalysis using partition functions
and present two different families of such functions namely balanced and
unbalanced partitioning (previous attacks being modelled as unbalanced
partitioning). Finally, we present experiments performed on a reduced
version of PRESENT that confirm the accuracy of the data complexity
estimates derived in some contexts. These experiments show a relatively
good accuracy of the estimates and illustrate the fact that using balanced
partitioning one is able to take profit of all available pairs.



Further research include exploiting the similarities observed between
distributions corresponding to different input differences and solving the
challenging problem of estimating correct-key distributions for actual ci-
phers.
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A Proofs

A.1 Proof of Theorem 1

We applied the result of the Lemma 1 to the LLR case. As previously
mentioned12, we consider that σ2R � σ2a and hence we neglect the term
σ2a to obtain the approximation of PS given in (1)

PS = Φ0,1

(
µR − µW − σW Φ−10,1 (1− 2−a)

σR

)
,

Φ−10,1(PS) =
Ns [D (p||θ) +D (θ||p)]− σW Φ−10,1 (1− 2−a)

σR
,

√
Ns =

√
∆D (p||θ)Φ−10,1(PS) +

√
∆D (θ||p)Φ−10,1 (1− 2−a)

D (p||θ) +D (θ||p)
.

What finally yields (2) and finishes the proof.

12 In Section 2 we promised figures to illustrate the fact that σ2
R � σ2

a. For instance,
for a = 8 we have σ2

R/σ
2
a ≥ 23 and for a = 35 we have σ2

R/σ
2
a ≥ 27.



A.2 Proof of Theorem 2

From Lemma 1 and assuming13 σ2a � σ2R, we can use (1)

PS = Φ0,1

(
µR − µW − σWΦ−10,1 (1− 2−a)

σR

)
.

Hence,

Φ−1(PS) =
NsC(p)−

√
2|V |Φ−10,1(1− 2−a)√

2|V |+ 4NsC(p)
.

We observe that the number of samples appears together with the
capacity C(p). Let us denote by X the value NsC(p) and express this
equation as a degree-two polynomial then solve it. To lighten notation we
denote Φ−10,1(1− 2−a) by b and Φ−10,1(PS) by t:

X −
√

2|V |b√
2|V |+ 4X

= t,

X2 − 2X
√

2|V |b+ 2|V |b2

2|V |+ 4X
= t2,

X2 − 2X
√

2|V |b+ 2|V |b2 − t2(2|V |+ 4X) = 0,

X2 − 2X(
√

2|V |b+ 2t2) + 2|V |(b2 − t2) = 0

As the data complexity is an increasing function of the success probability,
and because Ns = X

C(p) , the only meaningful root of this equation is:

X =
√

2|V |b+ 2t2 +

√
(
√

2|V |b+ 2t2)2 − 2|V |(b2 − t2),

=
√

2|V |b+ 2t2 + t

√
2|V |+ 4b

√
2|V |+ 4t2,

=
√

2|V |b+ 2t2 + t

√
(
√

2|V |+ 2b)2 + 4(t2 − b2),

=
√

2|V |b+ 2t2 + t(
√

2|V |+ 2b)

√
1 + 4

t2 − b2

(
√

2|V |+ 2b)2
.

In the reasonable case where PS = 0.5, then we obtain a simple for-

mula for Ns that is Ns =
b
√

2|V |
C(p) . In the case where b is not too large

compared to |V | then, we can use Ns ≈
(b+t)·(

√
2|V |+2t)

C(p) . In other situa-
tions the square-root term should not be close to 1 and hence should not
be neglected.

13 In the case of χ2 method σ2
W is smaller than σ2

R by definition. Hence, regarding the
discussion in Section 2, it is obvious that this hypothesis actually holds.



A.3 Details on experimental parameters
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Fig. 5. One round of SMALLPRESENT-[8]

In Section 5, we present different experiments on SMALLPRESENT-
[8] (see. Figure 5). We provide here explanations and details about the
different parameters that were used to conduct these experiments.

Choice of the input difference. All experiments proposed in this paper
were performed using 8-round differentials of SMALLPRESENT-[8] all
having the same input difference. We ran a Branch and Bound algorithm
to find the best 8-round differentials but restricted this search to input
differences activating Sboxes in {S0, S1, S2, S3} or in {S4, S5, S6, S7}
(see. Figure 5). It turned out that best trails were corresponding to input
differences 0x7 and 0xF. The one of these two differences that was the
more promising when considering 8-round distributions was δ0 = 0x7 and
hence we chose to perform experiments using this difference.

Choice of the output space cardinality. As explain in Section A.4, the time
and memory complexities of an attack depend on the partition function
used. For instance, for a balanced partition function πbal, the time com-
plexity increases with the number of Sboxes that the attacker need to
decipher. To conserve a practical time complexity we observed that we
can only decipher up to 3 Sboxes for data complexities of order 230. That
is why for the balanced partition functions we propose experiments with
vectors of size up to |V | = 212. For the unbalanced case the time com-
plexity of the attack remains practical as soon as |V | ≤ 216 and hence we
choose to perform tests with |V | = 216.

Choice of S-boxes considered when partitioning. According to the struc-
ture of SMALLPRESENT-[8], it seems reasonable to use nibble-oriented



partitions. This method allows us to restrict the partial decryption only
on the targeted Sboxes and using a subspace of this output differences will
only reduce the information that we can collect without modifying a lot
the time and memory complexities. As SMALLPRESENT-[8] only have
8 Sboxes, an exhaustive search for the best group of targeted differences
was practical14 and thus has been performed. Among all these combina-
tions, we chose the ones that provided the best expected capacities (hence
corresponding to smaller data complexities with the χ2 scoring function).
Summarizing, we chose distributions on 8 rounds to attack 9 rounds of
SMALLPRESENT-[8] which correspond to the following targeted Sboxes:

– For the balanced partition function πbal with |V | = 28 the targeted
Sboxes are S7 and S6.

– For the balanced partition function πbal with |V | = 212 the targeted
Sboxes are S7, S6 and S5.

– For the unbalanced partition function πunbal with |V | = 216 the tar-
geted Sboxes are S7, S6, S5 and S4.

A.4 Time and memory complexities

When targeting a fixed number n of key-bits and a fixed advantage a,
differences in the time and memory complexities between partition func-
tions and statistics mainly rely on the score computation. Indeed, the
complexities of the Analysis and Search phases are then the same. The
aims of this appendix is to give a rough idea of the time and memory
complexities of multiple differential attacks using the partition function
πunbal or πbal defined in Section 4.4 and using both statistics presented in
this paper. Of course this discussion remains very general since the result
strongly depends on the block cipher construction.

We assume here, as a reference, that the cost of a partial decryption
can be evaluated in terms of |V |15. Depending of the partition function
the number of pairs (y, y′) that we partially decipher is different:

– πunbal: Ns · |V |2m partial decryptions are performed.
– πbal: Ns partial decryptions are performed.

For each key candidate a score is computed and the memory complex-
ity of this computation depends on the used statistical: LLR or χ2 in our

14 This exhaustive search required at most the computation of the expected capacities
or the expected distribution vectors for

(
8
4

)
combinations.

15 In the case of our experiments on SMALLPRESENT-[8], as V corresponds to an
union of Sboxes, the cost can be measured in terms of the number of Sbox inversions.



case. Indeed for the LLR test the storage of the vector of counters is not
necessary hence for each key a single counter will be used while for χ2

technique a vector of size |V | will have to be stored for each candidate.
To summarize, in the analysis phase 2n|V | counters are required for χ2

while only 2n counters are needed for the LLR.


