Abstract
We propose a generic approach to design homomorphic encryption schemes, which extends Gjøsteen’s framework. From this generic method, we deduce a new homomorphic encryption scheme in a composite-order subgroup of points of an elliptic curve which admits a pairing e: G×G → G t . This scheme has some interesting theoretical and practical properties: it allows an arbitrary number of multiplications in the groups G and G t , as well as a pairing evaluation on the underlying plaintexts. We prove the semantic security under chosen plaintext attack of our scheme under a generalized subgroup membership assumption, and we also prove that it cannot achieve ind-cca1 security. We eventually propose an original application to shared decryption. On the theoretical side, this scheme is an example of cryptosystem which can be naturally implemented with groups of prime order, as the homomorphic properties require only a projecting pairing using Freeman’s terminology. However the application to shared decryption also relies on the fact that the pairing is cancelling and therefore does not survive this conversion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armknecht, F., Peter, A., Katzenbeisser, S.: Group Homomorphic Encryption: Characterizations, Impossibility Results, and Applications. To appear in Des. Codes Cryptography. IACR e-print 2010/501 (2010), http://eprint.iacr.org/2010/501
Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)
Benaloh, J.C.: Verifiable Secret-Ballot Elections. PhD thesis, Yale University (1988)
Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. SIAM J. Comput. 32(3), 586–615 (2003)
Baudron, O., Fouque, P.-A., Pointcheval, D., Poupard, G., Stern, J.: Practical Multi-Candidate Election System. In: Proc. of PODC 2001, pp. 274–283 (2001)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg (2004)
Brown, J.: Secure Public-Key Encryption from Factorisation-related problem. PhD Thesis, Queensland University of Technology (2007)
Boneh, D., Rubin, K., Silverberg, A.: Finding composite order ordinary elliptic curves using the Cocks-Pinch method. Journal of Number Theory 131(5), 832–841 (2011)
Bellare, M., Waters, B., Yilek, S.: Identity-Based Encryption Secure against Selective Opening Attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252. Springer, Heidelberg (2011)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully Homomorphic Encryption without Bootstrapping. To appear in Proc. of Innovations in Theoretical Computer Science (ITCS) (2012)
Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Standard) LWE. In: Proc. of FOCS 2011, pp. 97–106. IEEE (2011)
Damgård, I., Jurik, M.: A Generalisation, a Simplification and some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)
Freeman, D.M.: Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)
Fouque, P.-A., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)
González Nieto, J.M., Boyd, C., Dawson, E.: A Public Key Cryptosystem Based on a Subgroup Membership Problem. Des. Codes Cryptography 36(3), 301–316 (2005)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009, pp. 169–178. ACM (2009)
Gjøsteen, K.: Subgroup membership problems and public key cryptography. PhD Thesis, Norwegian University of Science and Technology (2004)
Gjøsteen, K.: Symmetric Subgroup Membership Problems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 104–119. Springer, Heidelberg (2005)
Goldwasser, S., Micali, S.: Probabilistic Encryption. JCSS 28(2), 270–299 (1984)
Jager, T., Schwenk, J.: The Generic Hardness of Subset Membership Problems under the Factoring Assumption. IACR e-print 2008/482 (2008), http://eprint.iacr.org/2008/482
Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)
Jurik, M.: Extensions to the Paillier Cryptosystem with Applications to Cryptological Protocols. PhD thesis, Århus University (2003)
Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)
Lewko, A.: Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012), http://eprint.iacr.org/2011/490.pdf
Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. J. Cryptology 17(4), 235–261 (2004)
Mitsunaga, T., Manabe, Y., Okamoto, T.: Efficient Secure Auction Protocols Based on the Boneh-Goh-Nissim Encryption. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 149–163. Springer, Heidelberg (2010)
Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on Transformations from Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind Signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010)
Naccache, D., Stern, J.: A New Public Key Cryptosystem Based on Higher Residues. In: Proc. of CCS 1998, pp. 546–560 (1998)
Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: a formal model and a Paillier-based three-round construction with provable security. Int. J. Inf. Secur. 5(4), 241–255 (2006)
Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)
Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Seo, J.H., Cheon, J.H.: Beyond the Limitation of Prime-Order Bilinear Groups, and Round Optimal Blind Signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 133–150. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castagnos, G., Laguillaumie, F. (2012). Homomorphic Encryption for Multiplications and Pairing Evaluation. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-32928-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32927-2
Online ISBN: 978-3-642-32928-9
eBook Packages: Computer ScienceComputer Science (R0)