Skip to main content

Blackbox Construction of a More Than Non-Malleable CCA1 Encryption Scheme from Plaintext Awareness

  • Conference paper
Security and Cryptography for Networks (SCN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7485))

Included in the following conference series:

Abstract

We construct an NM − CCA1 encryption scheme from any CCA1 encryption scheme that is also plaintext aware and weakly simulatable. We believe this is the first construction of a NM − CCA1 scheme that follows strictly from encryption schemes with seemingly weaker or incomparable security definitions to NM − CCA1.

Previously, the statistical PA1 notion of plaintext awareness was only known to imply CCA1. Our result is therefore novel because unlike the case of CPA and CCA2, it is unknown whether a CCA1 scheme can be transformed into an NM-CCA1 scheme. Additionally, we show both the Damgård Elgamal Scheme (DEG) [Dam91] and the Cramer-Shoup Lite Scheme (CS-Lite) [CS03] are weakly simulatable under the DDH assumption. Since both are known to be statistical PA1 under the Diffie-Hellman Knowledge (DHK) assumption, they instantiate our scheme securely.

Next, in a partial response to a question posed by Matsuda and Matsuura [MM11], we define an extended version of the NM − CCA1, cNM − CCA1, in which the security definition is modified so that the adversary is permuted to ask a c ≥ 1 number of parallel queries after receiving the challenge ciphertext. We extend our construction to yield a cNM − CCA1 scheme for any constant c. All of our constructions are black-box.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-Box Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cramer, R., et al.: Bounded CCA2-Secure Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)

    Google Scholar 

  7. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIREV: SIAM Review 45 (2003)

    Google Scholar 

  8. Dent, A.W.: The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the Standard Model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dent, A.W.: The hardness of the DHK problem in the generic group model. IACR Cryptology ePrint Archive 2006, 156 (2006)

    Google Scholar 

  10. Damgård, I., Nielsen, J.B.: Improved Non-committing Encryption Schemes Based on a General Complexity Assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Matsuda, T., Matsuura, K.: Parallel Decryption Queries in Bounded Chosen Ciphertext Attacks. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 246–264. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)

    Google Scholar 

  13. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: FOCS, pp. 531–540. IEEE Computer Society (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Myers, S., Sergi, M., shelat, a. (2012). Blackbox Construction of a More Than Non-Malleable CCA1 Encryption Scheme from Plaintext Awareness. In: Visconti, I., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2012. Lecture Notes in Computer Science, vol 7485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32928-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32928-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32927-2

  • Online ISBN: 978-3-642-32928-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics