Pruning GP—Based classifier Ensembles by
Bayesian Networks

C. De Stefano!, G. Folino?, F. Fontanella! and A. Scotto di Freca!

! Universita di Cassino e del Lazio Meridionale — Italy
{destefano,fontanella,a.scotto}@unicas.it
2 ICAR-CNR Istituto di Calcolo e Reti ad Alte Prestazioni —Italy
folino@icar.cnr.it

Abstract. Classifier ensemble techniques are effectively used to com-
bine the responses provided by a set of classifiers. Classifier ensembles
improve the performance of single classifier systems, even if a large num-
ber of classifiers is often required. This implies large memory require-
ments and slow speeds of classification, making their use critical in some
applications. This problem can be reduced by selecting a fraction of the
classifiers from the original ensemble. In this work, it is presented an
ensemble-based framework that copes with large datasets, however se-
lecting a small number of classifiers composing the ensemble. The frame-
work is based on two modules: an ensemble-based Genetic Programming
(GP) system, which produces a high performing ensemble of decision
tree classifiers, and a Bayesian Network (BN) approach to perform clas-
sifier selection. The proposed system exploits the advantages provided by
both techniques and allows to strongly reduce the number of classifiers in
the ensemble. Experimental results compare the system with well-known
techniques both in the field of GP and BN and show the effectiveness of
the devised approach. In addition, a comparison with a pareto optimal
strategy of pruning has been performed.

1 Introduction

In the last two decades, classifier ensemble techniques have shown to be a vi-
able alternative to using a single classifier [10]. Such techniques try to effectively
combine the responses provided by a set of classifiers, that have been properly
trained in such a way that they are “diverse”, i.e. they make uncorrelated errors.
The responses are usually combined by means of a voting mechanism, which la-
bels an unknown sample by assigning it the class label which has the highest
occurrence among those provided by the whole set of classifiers. Ensemble tech-
niques have been also used for improving GP-based classification systems [2, 6,
9]. In [2] and [6], ensembles of decision trees are evolved, and the diversity among
the ensemble members is obtained using techniques like bagging and boosting.
Both such approaches are meta-algorithms that aggregate multiple classifiers,
or hypotheses, generated by the same learning algorithm trained on different
distributions of training data. As concerns the combining rules, bagging uses

the majority vote, while boosting adopts the weighted majority vote, where the
weight associated to a classifier is computed on the basis of its overall accuracy
on the training data. In [6], a novel GP—based classification system, called Boost-
CGPC, based on the AdaBoost.M2 boosting algorithm [8], has been presented.
It is based on a model of the population, in which individuals interact according
to a cellular automata inspired model, whose goal is to enable a fine-grained
parallel implementation of GP. In this model, each individual has a spatial loca-
tion on a low-dimensional grid and interacts only with other individuals within
a small neighborhood. The experimental results presented in [6] showed that
boost CGPC represents an effective classification algorithm able to deal with
large data sets.

As mentioned above, classifier ensembles may improve the performance of
single classifier systems, but often a large number of classifiers is required. This
implies large memory requirements and slow speeds of classification, making
their use critical in some applications. This problem can be solved by selecting
a fraction of the classifiers from the original ensemble. Such reduction, often
denoted as “ensemble pruning” in the literature, can perform even better than
the whole ensemble if a subset of complementary classifiers is selected [12,1].
When the cardinality IV of the whole ensemble is high, the problem of finding
the optimal sub-ensemble becomes computationally intractable because of the
resulting exponential growth of the search space. Several heuristic algorithms
have been proposed in the literature for finding near optimal solutions [12].

In a previous work [4] the above problem has been faced by reformulating the
classifier combination problem as a pattern recognition one, in which the pattern
is represented by the set of class labels provided by the classifiers when classify-
ing a sample. According to this approach, for each training sample, the combiner
estimates the conditional probability of each class, given the set of labels pro-
vided by the ensemble classifiers. In this way, it is possible to automatically
derive the combining rule through the estimation of the conditional probability
of each class. Moreover, it is also possible to identify redundant classifiers, i.e.
classifiers whose outputs do not influence the output of the combiner. In fact, if
the behavior of such classifiers is very similar to that of other classifiers in the
ensemble, then they may be discarded without affecting the overall performance
of the combiner. In such a way the main drawback of the combining methods
discussed above can be overcame. In [5] a Bayesian Network (BN) [11] has been
used to automatically infer the joint probability distributions between the out-
puts of the classifiers and the class label. The BN learning has been performed
by means of an evolutionary algorithm using a direct encoding scheme of the
BN structure.

In this paper we present a new classification system that exploits the ad-
vantages of the two aforementioned approaches. The goal is to build a high
performance classification system that uses a small number of classifiers and is
able to deal with large data sets. For this purpose, we built a two—module sys-
tem that combines the BoostCGPC algorithm [6] with the BN based approach to
classifier combination [5]. The proposed system allows us to strongly reduce the

number of classifiers in the ensemble. More specifically, such result is achieved
by following two different approaches: the boostCGPC evolves diverse classifiers
(decision trees) by means of a boosting technique; the BN module evaluates clas-
sifiers diversity by estimating the statistical dependencies of the responses they
provide. Such estimate is used to select, among the classifiers provided by the
BoostCGPC module, a small number of them. Moreover, the responses provided
by the selected classifiers are effectively combined by means of a rule learned by
the BN module.

The effectiveness of the proposed system, has been tested by performing
several experiments. The obtained results have been compared with those ob-
tained by the BoostCGPC approach [6] and with those achieved by using the
K2 algorithm [4]. Moreover, the effectiveness of the devised approach as pruning
strategy has been tested by comparing its results with those obtained by the
Pareto optimal pruning strategy [10].

2 System Architecture

The proposed system consists of two main modules: the first one builds an ensem-
ble of decision tree classifiers (experts) by means of the Boost CGPC algorithm.
The second one uses a BN to implement the combining rule that produces the
final output of the whole system. More specifically, unknown samples are recog-
nized using a two—step procedure: (i) the feature values describing the unknown
sample are provided to each of the ensemble classifiers built by the Boost CGPC
module; (ii) the set of responses produced is given in input to the BN module.
Such module labels the sample with the most likely class, among those of the
problem at hand, given the responses collected by the first module®. Also the
learning phase requires two steps. In the first step, the BoostCGPC module is
trained using a data set containing labeled samples described by their feature
values. This learning is carried out, by means of a boosting—based technique
(described in Subsection 2.1). In the second step, the responses provided by the
set of decision trees built in the first step are used to learn the BN of the second
module (Subsection 2.2).

2.1 BoostCGPC Algorithm

The Boost Cellular Genetic Programming Classifier [6] algorithm builds GP en-
sembles using a hybrid variation of the classical distributed island model of GP.
GP ensembles offer several advantages over a monolithic GP, i.e. the possibility
of coping with very large data sets, more simple and understandable models,
robustness and obviously the advantages correlated with a distributed imple-
mentation.

3 Note that the second step does not require any further computation with respect to
the Majority Voting rule. In fact, it only needs to read tables storing class probabil-
ities.

Each GP classifier forming the ensemble is built using a cellular GP algorithm
(cGP), enhanced with the boosting technique, which runs on each node. ¢cGP
runs for 7" rounds; for every round it generates a classifier per node, exchanges it
with the other nodes, and updates the weights of the samples for the next round,
according to the boosting algorithm. The selection rule, the replacement rule and
the asynchronous migration strategy are specified in the ¢GP algorithm. Each
node generates the GP classifier by running for a fixed number of generations.
During the boosting rounds, each classifier maintains the local vector of the
weights that directly reflect the prediction accuracy. At each boosting round the
hypotheses generated by each classifier are exchanged among all the processors
in order to produce the ensemble of predictors. In this way each node maintains
the entire ensemble and it can use it to recalculate the new vector of weights.
After the execution of the fixed number of boosting rounds, the classifiers are
updated.

BoostCGPC adopts the AdaBoost.M2 version of the well-known boosting
algorithm introduced by Schapire and Freund for “boosting” the performance of
any weak learner, i.e. an algorithm that ”generates classifiers which need only
be a little bit better than random guessing”.

In practice, the original boosting algorithm adaptively changes the distribu-
tion of the training set depending on how difficult each example is to classify.
Given the number T of trials (rounds) to execute, T" weighted training sets
S1,8Ss,...,87 are sequentially generated and T classifiers C*,...,CT are built
to compute 7' weak hypotheses h;. Let w! denote the weight of the example x;
at trial t. At the beginning w} = 1/n for each x;. At each round t = 1,...,T,
a weak learner C*, whose error €' is bounded to a value strictly less than 1/2,
is built and the weights of the next trial are obtained by multiplying the weight
of the correctly classified examples by 8¢ = €'/(1 — €') and renormalizing the
weights so that Eiwf“ = 1. In this way, it focuses on examples that are hardest
to classify, as “easy” examples get a lower weight, while “hard” examples, that
tend to be misclassified, get higher weights. The boosted classifier gives the class
label y that maximizes the sum of the weights of the weak hypotheses predicting
that label, where the weight is defined as log(1/8"). The final classifier hy is
defined as follows:

hy = arg max (Z log(ﬂlt)ht(amy)) (1)

Given the training set S = {(z1,y1),...,(zn,yn)} and the number P of
processors to use to run the algorithm, we partition the population of classifiers
in P subpopulations, one for each processor and draw P sets of samples of
size n < N, by uniformly sampling instances from S with replacement. Each
subpopulation is evolved for k generations and trained on its local sample by
running ¢cGP.

After k generations, the individual with the best fitness is selected for partic-
ipating to vote. In fact the P individuals of each subpopulation having the best
fitness are exchanged among the P subpopulations and constitute the ensemble

of predictors that will determine the weights of the examples for the next round.
After the execution of the fixed number T' of boosting rounds, the overall classi-
fiers composing the ensemble, collected during the different rounds, are used to
evaluate the accuracy of the classification algorithm.

2.2 The BN Module

As mentioned in the Introduction, the problem of combining the responses pro-
vided a set of classifiers can be handled by estimating the conditional probability
of each class given the set of labels provided by the classifiers. Such problem may
be effectively solved by using a Bayesian Network (BN). In particular, in [4], a
BN has been used for combining the responses of more classifiers in a multi
expert system.

A BN is a probabilistic graphical model that allows the representation of
a joint probability distribution of a set of random variables through a Direct
Acyclic Graph (DAG) [11]. The nodes of the graph correspond to variables,
while the arcs characterize the statistical dependencies among them. An arrow
from a node i to a node j has the meaning that j is conditionally dependent on
1, and we can refer to ¢ as a parent of j. In a BN, the i—th node e; is associated
with a conditional probability function p(e;|pae,), where pa., indicates the set
of nodes which are parents of e;. Such function quantifies the effect that the
parents have on that node.
Once the statistical dependencies among variables have been estimated and en-
coded in the DAG structure, the joint probability of the represented variables
{e1,...,er} can be described as:

pler....er) =] pleilpac,) (2)

e, €EE

In the classifier ensemble framework, this property can be used to infer the
true class ¢ of an unknown sample when the responses of the ensemble classifiers

Fig.1. An example of a BN. The sets pae; = {ei,ez}, pac = {es,e5} and
pae; = {c} respectively represents the parent sets of the nodes es, ¢ and
es. The DAG structure induces the factorization of the joint probability
p(c,e1,e2,e3,e4,e5) = p(es|c)p(c|es, e5)p(esler, e2)p(e1) plez)p(ea). In this case
Ec. = {es}, Ezc = {es,e5}.

are known, if we consider ¢ as a variable in the joint probability of Eq. (2). In
fact, suppose the ensemble consists of L classifiers, then the true class ¢ and the
L classifier responses can be modeled as a set of (L+ 1) variables {c,eq,...,er},
and the Eq. (2) allows the description of their joint probability as:

p(c,el,...7eL):p(c|paC)H p(ei|pa€i) (3)
e, €E

The node ¢ may be parent of one or more nodes of the DAG. Therefore, it
may be useful to divide the set of DAG nodes that are not parent of ¢ in two
groups: the first one, denoted as E., contains the nodes having the node ¢ among
their parents, and the second one, denoted as Ez, the remaining ones. With this
assumption, Eq. (3) can be rewritten as:

ple.es,. .. en) =plelpac) T pleilpac) [] pleilpac,) (4)

e;€E. e, €Ez

As will be shown in the following section, this property allows a BN to recognize
a given sample only considering the responses provided by classifiers represented
by the nodes that are directly linked to the class node. For instance, the BN
shown in Fig. 1 considers only the responses of the experts es, e4 and e5, while
the experts e; and es are not taken into account. Thus, this approach allows to
detect a reduced set of relevant experts, namely the ones connected to node c,
whose responses are actually used by the combiner to provide the final output,
while the set Ez of experts, which do not add information to the choice of ¢, are
discarded.

Using a BN for combining the responses of a set of classifiers requires that
both the network structure, which determines the statistical dependencies among
variables, and the parameters of the probability distributions be learned from
a training set of examples. The structural learning is aimed at capturing the
relation between the variables, and hence the structure of the DAG. It can be
seen as an optimization problem which requires the definition of a search strat-
egy in the space of graph structures, and a scoring function for evaluating the
effectiveness of candidate solutions. A typical scoring functions is the posterior
probability of the structure given the training data [3]. Once the DAG structure
has been determined, the parameters of the conditional probability distributions
are computed from training data.

The exhaustive search of the BN structure which maximizes the scoring func-
tion is a NP-hard problem. For this reason, greedy algorithms are used to search
for suboptimal solutions by maximizing at each step a local scoring function
which takes into account only the local topology of the DAG. To overcome
this problem, we use an alternative approach in which the structure of the BN
is learned by means of an Evolutionary algorithm. The algorithm is based on
a specifically devised data structure for encoding DAG, called multilist (ML),
which allows an effective and easy implementation of the genetic operators. Fur-
ther details about ML data structure and the genetic operators can be found in
[5].

3 Experimental Results

The proposed approach has been tested on five data sets: Census, Segment,
Adult, Phoneme and Couvtype. The size and class distribution of these data sets
are described in Table 1. They present different characteristics in the number
and type (continuous and nominal) of attributes, two classes versus multiple
classes and number of samples. Each dataset has been divided, as usual, in a
training set (2/3 of the original data) and in a test set (1/3 of the original data).

All the experiments have been performed on a Linux cluster with 16 Ita-
nium?2 1.4GHz nodes each having 2 GBytes of main memory and connected
by a Myrinet high performance network. The BoostGCPC module used stan-
dard GP parameters (prob. of crossover=0.8, prob. of mutation=0.1, maximum
depth=17, no parsimony factor) and a population of 100 individuals for node.
The original training set has been partitioned among 5 nodes and 10 rounds
of boosting, with 100 generations for round, have been performed in order to
produce 50 classifiers. It is worth to remember the algorithm produce a different
classifier for each round on each node.

All results were obtained by averaging over 30 runs. For each run of the
Boost CGPC module, a run of the BN module has been carried out. Each BN run
has been performed by using the responses, on the whole training set, provided
by the classifiers learned in the corresponding BoostCGPC run. The results on
the test set has been obtained by first submitting each sample to the learned
decision trees ensemble. Then the ensemble responses have been provided to the
learned BN. Finally, the BN output label has been compared with the true one
of that sample.

The results achieved by our approach (hereafter BN-Boost-CGPC) have been
compared with those obtained by the BoostCGPC approach, which uses the
wighted majority rule (Eq. 1) for combining the ensemble responses. Moreover,
in order to test the effectiveness of the evolutionary learning performed by the
second module of the proposed system, we also compared our results with those
obtained by a standard algorithm for learning Bayesian Networks, namely the K2
algorithm [4]. Such a algorithm uses a hill climbing technique to learn Bayesian
Networks from data. With the aim of performing a fair comparison, we adopted
for the K2 algorithm the same scoring function used by our system for evaluating
the quality of the network structure. For each dataset, these BNs have been
learned on the responses provided by the set of classifiers supplied by the first

Table 1. The data sets used in the experiments

datasets|attr.|samples|classes
Adult 14 | 48842 2
Census 4 | 299285
Phoneme| 5 5404
Segment | 36 2310
Covtype | 54 | 581012

~N| O NN

module of our system on the training set. The trained BNs have been tested on
the responses given by the just mentioned classifiers, obtained on the test set.

Comparison results are shown in Tab. 2. The second column shows the car-
dinality of the ensembles taken into account (10, 20 and 50 classifiers). The
ensembles made of 10 and 20 classifiers have been obtained by considering re-
spectively the first 10 and 20 classifiers generated by the BoostCGPC algorithm.
For each considered method, the table reports the training and test error. Col-
umn 5 contains the number of classifiers actually used by our approach, i.e.
only the classifiers that are directly connected to the class label node in the
DAG. Note that for the other methods such number has not been reported since
it coincides with the number of classifier making up the ensemble (10, 20 or
50). In order to statistically validate the comparison results, we performed the
two—tailed t—test(a = 0.05) over the 30 carried out runs. The values in bold in
the test error columns highlight, for each dataset, the results which, according to
the performed test, are significantly better with respect to the second best result
(such results are starred). The proposed approach, for all considered datasets,
achieves better performance than those obtained by the two methods used for
the comparison. It is worth to remark that such results are always achieved by
using only a small number of the available classifiers.

Table 2. Comparison results. Bold values represent the best statistically significant
results, while starred values represent the second best results. The Columns with the
headers tr and ts respectively contain the train and test errors.

BN-BoostCGPC | BoostCGPC|| K2-BN
tr[ts [# sel. tr[ts tr[ts

10 ||15.03/15.05 | 3.05 |[17.24| 17.38 |(|17.16]17.34*
Adult |20 ||15.70{15.65| 3.05 |[16.99] 17.11* [[17.55|17.83
50 [[13.19/13.53 | 3.90 ||14.43] 14.33" [[17.66|18.29

10 ||4.72| 4.85 | 3.50 ||5.27| 5.27* ||5.45| 5.42
Census | 20 |[4.73] 4.87 | 4.25 |[5.24| 5.24* | 5.00| 5.40
50 [[4.09| 4.20 | 3.65 ||4.97| 5.08" [[4.50| 5.20

10 ||33.83| 34.05| 3.15 |[35.97| 35.83* |[37.23|38.37
Covtype | 20 [[33.06/33.29| 3.75 (|34.73| 34.72* {|36.55| 37.00
50 (130.80/31.00| 3.50 [[32.52 32.51* {[33.04]33.94

10 |[17.97|18.92| 3.05 ||19.14| 19.84 |[19.52|19.72*
Phoneme| 20 ||17.10{17.82| 3.86 ||17.92] 18.37* {{19.03]19.35
50 |[15.81|16.12| 3.21 [[16.85] 17.36™ [[18.73[19.33

10 ([12.08|12.48 | 2.25 ||17.33| 18.28 |[13.52|14.43"

Segment | 20 [[10.80{11.50 | 2.55 ||15.24] 16.14 [[12.33|13.30*
50 [[11.08|11.46 | 2.85 |[14.15] 14.90 |[[11.69[12.87*

Dataset |ens.

In order to test the effectiveness of the ensemble pruning performed by our
system, we compared its results with those obtained by the Pareto optimal prun-
ing strategy [10]. Such approach considers, for each couple of classifiers in the

Table 3. Comparison results for the selection strategies. Bold values represent the best
statistically significant results, while starred values represent the second best results.

BN-Boost Pareto optimal
Dataset |ens. geno pheno
error #sel. error [#sel. error [#sel.

10 [[15,05] 3,05 || 17,25 | 4,95 |17, 24" 5,20
Adult | 20 |[13,53] 3,90 || 17,15 | 9,75 |16,99"| 13,05
50 |[13,53] 3,90 || 17,15 | 9,75 |16,99"| 13,05
10 [[4,85 [3,50 || 5,42% [4,90 | 5,42 | 5,75
Cens |20 |[4,87 4,25 |[5,40" | 7,05 | 5,40 |10,40
50 || 4,20 | 3,65 || 5,38" | 9,65 | 5,39 |16,60
10 [[34,05] 3,15 |[36,01%[5,10 | 36,01 | 6,55
Covtype | 20 |[33,29(3,75 |35, 15%| 7,65 | 35,38 | 9,65
50 ([32,00] 3,50 ||34,33%| 9,35 | 34,71 | 14,70

10 [[18,92] 3,05 [20,29 | 5,50 |20, 09*| 5,85
Phoneme| 20 ||17,82(3,86 || 20,04 | 6,70 |19,59%| 9,10
50 |[16,12] 3,21 || 19,79 | 8,90 |19,517| 10,75
10 [[12,48] 2,25 [[30, 14*[5,90 | 30,74 | 5,40
Segment | 20 |[11,50] 2,55 || 29,11 | 7,85 |28, 38" | 10,10
50 |[11,46] 2,85 || 28,52 | 9,20 [27,59" | 14,45

original ensemble, two quality measures: the average train error and a pairwise
diversity measure. These couples of values, can be plotted in a two-dimensional
space, where every pair of classifiers is represented by a dot. At this point we
can imagine that the most desirable pairs of classifiers are those represented by
the dots making up the Pareto front of the whole set of classifier pairs. Note
that the Pareto front contains all non-dominated points of the plot. A point 4
is non-dominated if and only if there is no other point j, so that j is better
than i on both quality measures. As concerns the diversity measure, we taken
into account two different measures, better described in [7]: a genotypic mea-
sure that evaluates the structural diversity between the two trees representing
the couple of classifiers to be assessed; a phenotypic measure based on Kappa
statistics, which gives a score of how much homogeneity there is in the responses
provided by two classifiers. The comparison results are shown in Table 3. Also
in this case the results have been statistically validate by means of the two—
tailed t—test(a = 0.05) over the 30 carried out runs and the best statistically
significant results are marked in bold. From the table it can be seen that for all
the datasets, our method outperforms the Pareto optimal approach although it
selects a significant minor number of classifiers.

4 Conclusions

We presented a new framework for improving the performance of classifier en-
semble, by means of an effective pruning algorithm based on Bayesian networks.

The framework consists of two modules: an ensemble-based Genetic Program-
ming system, which produces a high performing ensemble of decision tree clas-
sifiers, and a Bayesian Network approach to perform classifier selection.

The effectiveness of the proposed system has been tested by comparing the
accuracy of the framework with those obtained by the BoostCGPC approach
and with those achieved by using a Bayesian Network learned by using the K2
algorithm. In addition, in order to validate the effectiveness of the approach
as pruning strategy, it has been compared with the Pareto optimal pruning
strategy. For all the datasets, our method obtains better results than the other
methods both in terms of accuracy and of the number of classifiers selected,
confirming the goodness of its usage as a pruning strategy. Future works will
include the comparison with other state-of-the-art methods and the exploration
of the overhead in terms of execution time our method requires.

Acknowledgments

This research work has been partially funded by the MIUR project FRAME,
PONO01-02477.

References

1. R. Banfield, L. Hall, K. Bowyer, and W. Kegelmeyer. Ensembles diversity measures
and their application to thinning. Information Fusion, 6:49—62, 2005.

2. E. Canti-Paz and C. Kamath. Inducing oblique decision trees with evolutionary
algorithms. IEEE Trans. on Evolutionary Computation, 7(1):54—68, February 2003.

3. G. F. Cooper and E. Herskovits. A bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9(4):309-347, 1992.

4. C. De Stefano, C. D’Elia, A. Scotto di Freca, and A. Marcelli. Classifier combi-
nation by bayesian networks for handwriting recognition. Int. Journal of Pattern
Rec. and Artif. Intell., 23(5):887-905, 2009.

5. C. De Stefano, F. Fontanella, C. Marrocco, and A. Scotto di Freca. A hybrid
evolutionary algorithm for bayesian networks learning: An application to classifier
combination. In EvoApplications (1), pages 221-230, 2010.

6. G. Folino, C. Pizzuti, and G. Spezzano. Gp ensembles for large-scale data classifi-
cation. IEEFE Trans. on Evolutionary Computation, 10(5):604-616, October 2006.

7. G. Folino, C. Pizzuti, and G. Spezzano. Training distributed gp ensemble with
a selective algorithm based on clustering and pruning for pattern classification.
IEEE Trans. Fvolutionary Computation, 12(4):458-468, 2008.

8. Y. Freund and R. Shapire. In Proceedings of the 13th Int. Conference on Machine
Learning.

9. C. Gagné, M. Sebag, M. Schoenauer, and M. Tomassini. Ensemble learning for
free with evolutionary algorithms? In GECCO, pages 17821789, 2007.

10. L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, 2004.

11. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

12. Z. Zhou and W. Tang. Selective ensemble of decision trees. Rough Sets, Fuzzy
Sets, Data Mining, and Granular Computing, pages 589-589, 2003.

