Skip to main content

Enhancing Learning Capabilities by XCS with Best Action Mapping

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

  • 1950 Accesses

Abstract

This paper proposes a novel approach of XCS called XCS with Best Action Mapping (XCSB) to enhance the learning capabilities of XCS. The feature of XCSB is to learn only best actions having the highest predicted payoff with the high accuracy unlike XCS which learns actions having the highest and lowest predicted payoff with the high accuracy. To investigate the effectiveness of XCSB, we applied XCSB to two benchmark problems: multiplexer problem as a single step problem and maze problem as a multi step problem. The experimental results show that (1) XCSB can solve quickly the problem which has a large state space and (2) XCSB can achieve a high performance with a small max population size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernadó-mansilla, E., Garrell-Guij, J.M.: Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks. Evolutionary Computation 11, 209–238 (2003)

    Article  Google Scholar 

  2. Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Gradient Descent Methods in Learning Classifier Systems: Improving XCS Performance in Multistep Problems. Evolutionary Computation 9(5), 452–473 (2005)

    Article  Google Scholar 

  3. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a Theory of Generalization and Learning in XCS. IEEE Transactions on Evolutionary Computation 8(1), 28–46 (2004)

    Article  Google Scholar 

  4. Butz, M.V., Sastry, K., Goldberg, D.E.: Tournament Selection in XCS. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 1857–1869 (2003)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley (1989)

    Google Scholar 

  6. Holland, J.H.: Escaping Brittleness: The Possibilities of General Purpose Learning Algorithms Applied to Parallel Rule-based system. Machine Learning 2, 593–623 (1986)

    Google Scholar 

  7. Kovacs, T.: Strength or Accuracy? Fitness Calculation in Learning Classifier Systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 143–160. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Sutton, R.S.: Learning to Predict by the Methods of Temporal Differences. Machine Learning 3(1), 9–44 (1988)

    Google Scholar 

  9. Wilson, S.W.: ZCS: A Zeroth Level Classifier System. Evolutionary Computation 2(1), 1–18 (1994)

    Article  Google Scholar 

  10. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakata, M., Lanzi, P.L., Takadama, K. (2012). Enhancing Learning Capabilities by XCS with Best Action Mapping. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics